STM32F769IDiscovery  1.00
uDANTE Audio Networking with STM32F7 DISCO board
arm_mat_cmplx_mult_q15.c
Go to the documentation of this file.
1 /* ----------------------------------------------------------------------
2 * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
3 *
4 * $Date: 19. March 2015
5 * $Revision: V.1.4.5
6 *
7 * Project: CMSIS DSP Library
8 * Title: arm_cmplx_mat_mult_q15.c
9 *
10 * Description: Q15 complex matrix multiplication.
11 *
12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * - Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * - Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in
21 * the documentation and/or other materials provided with the
22 * distribution.
23 * - Neither the name of ARM LIMITED nor the names of its contributors
24 * may be used to endorse or promote products derived from this
25 * software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 * -------------------------------------------------------------------- */
40 #include "arm_math.h"
41 
89  const arm_matrix_instance_q15 * pSrcA,
90  const arm_matrix_instance_q15 * pSrcB,
92  q15_t * pScratch)
93 {
94  /* accumulator */
95  q15_t *pSrcBT = pScratch; /* input data matrix pointer for transpose */
96  q15_t *pInA = pSrcA->pData; /* input data matrix pointer A of Q15 type */
97  q15_t *pInB = pSrcB->pData; /* input data matrix pointer B of Q15 type */
98  q15_t *px; /* Temporary output data matrix pointer */
99  uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
100  uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
101  uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
102  uint16_t numRowsB = pSrcB->numRows; /* number of rows of input matrix A */
103  uint16_t col, i = 0u, row = numRowsB, colCnt; /* loop counters */
104  arm_status status; /* status of matrix multiplication */
105  q63_t sumReal, sumImag;
106 
107 #ifdef UNALIGNED_SUPPORT_DISABLE
108  q15_t in; /* Temporary variable to hold the input value */
109  q15_t a, b, c, d;
110 #else
111  q31_t in; /* Temporary variable to hold the input value */
112  q31_t prod1, prod2;
113  q31_t pSourceA, pSourceB;
114 #endif
115 
116 #ifdef ARM_MATH_MATRIX_CHECK
117  /* Check for matrix mismatch condition */
118  if((pSrcA->numCols != pSrcB->numRows) ||
119  (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
120  {
121  /* Set status as ARM_MATH_SIZE_MISMATCH */
122  status = ARM_MATH_SIZE_MISMATCH;
123  }
124  else
125 #endif
126  {
127  /* Matrix transpose */
128  do
129  {
130  /* Apply loop unrolling and exchange the columns with row elements */
131  col = numColsB >> 2;
132 
133  /* The pointer px is set to starting address of the column being processed */
134  px = pSrcBT + i;
135 
136  /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
137  ** a second loop below computes the remaining 1 to 3 samples. */
138  while(col > 0u)
139  {
140 #ifdef UNALIGNED_SUPPORT_DISABLE
141  /* Read two elements from the row */
142  in = *pInB++;
143  *px = in;
144  in = *pInB++;
145  px[1] = in;
146 
147  /* Update the pointer px to point to the next row of the transposed matrix */
148  px += numRowsB * 2;
149 
150  /* Read two elements from the row */
151  in = *pInB++;
152  *px = in;
153  in = *pInB++;
154  px[1] = in;
155 
156  /* Update the pointer px to point to the next row of the transposed matrix */
157  px += numRowsB * 2;
158 
159  /* Read two elements from the row */
160  in = *pInB++;
161  *px = in;
162  in = *pInB++;
163  px[1] = in;
164 
165  /* Update the pointer px to point to the next row of the transposed matrix */
166  px += numRowsB * 2;
167 
168  /* Read two elements from the row */
169  in = *pInB++;
170  *px = in;
171  in = *pInB++;
172  px[1] = in;
173 
174  /* Update the pointer px to point to the next row of the transposed matrix */
175  px += numRowsB * 2;
176 
177  /* Decrement the column loop counter */
178  col--;
179  }
180 
181  /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
182  ** No loop unrolling is used. */
183  col = numColsB % 0x4u;
184 
185  while(col > 0u)
186  {
187  /* Read two elements from the row */
188  in = *pInB++;
189  *px = in;
190  in = *pInB++;
191  px[1] = in;
192 #else
193 
194  /* Read two elements from the row */
195  in = *__SIMD32(pInB)++;
196 
197  *__SIMD32(px) = in;
198 
199  /* Update the pointer px to point to the next row of the transposed matrix */
200  px += numRowsB * 2;
201 
202 
203  /* Read two elements from the row */
204  in = *__SIMD32(pInB)++;
205 
206  *__SIMD32(px) = in;
207 
208  /* Update the pointer px to point to the next row of the transposed matrix */
209  px += numRowsB * 2;
210 
211  /* Read two elements from the row */
212  in = *__SIMD32(pInB)++;
213 
214  *__SIMD32(px) = in;
215 
216  /* Update the pointer px to point to the next row of the transposed matrix */
217  px += numRowsB * 2;
218 
219  /* Read two elements from the row */
220  in = *__SIMD32(pInB)++;
221 
222  *__SIMD32(px) = in;
223 
224  /* Update the pointer px to point to the next row of the transposed matrix */
225  px += numRowsB * 2;
226 
227  /* Decrement the column loop counter */
228  col--;
229  }
230 
231  /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
232  ** No loop unrolling is used. */
233  col = numColsB % 0x4u;
234 
235  while(col > 0u)
236  {
237  /* Read two elements from the row */
238  in = *__SIMD32(pInB)++;
239 
240  *__SIMD32(px) = in;
241 #endif
242 
243  /* Update the pointer px to point to the next row of the transposed matrix */
244  px += numRowsB * 2;
245 
246  /* Decrement the column loop counter */
247  col--;
248  }
249 
250  i = i + 2u;
251 
252  /* Decrement the row loop counter */
253  row--;
254 
255  } while(row > 0u);
256 
257  /* Reset the variables for the usage in the following multiplication process */
258  row = numRowsA;
259  i = 0u;
260  px = pDst->pData;
261 
262  /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
263  /* row loop */
264  do
265  {
266  /* For every row wise process, the column loop counter is to be initiated */
267  col = numColsB;
268 
269  /* For every row wise process, the pIn2 pointer is set
270  ** to the starting address of the transposed pSrcB data */
271  pInB = pSrcBT;
272 
273  /* column loop */
274  do
275  {
276  /* Set the variable sum, that acts as accumulator, to zero */
277  sumReal = 0;
278  sumImag = 0;
279 
280  /* Apply loop unrolling and compute 2 MACs simultaneously. */
281  colCnt = numColsA >> 1;
282 
283  /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
284  pInA = pSrcA->pData + i * 2;
285 
286 
287  /* matrix multiplication */
288  while(colCnt > 0u)
289  {
290  /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
291 
292 #ifdef UNALIGNED_SUPPORT_DISABLE
293 
294  /* read real and imag values from pSrcA buffer */
295  a = *pInA;
296  b = *(pInA + 1u);
297  /* read real and imag values from pSrcB buffer */
298  c = *pInB;
299  d = *(pInB + 1u);
300 
301  /* Multiply and Accumlates */
302  sumReal += (q31_t) a *c;
303  sumImag += (q31_t) a *d;
304  sumReal -= (q31_t) b *d;
305  sumImag += (q31_t) b *c;
306 
307  /* read next real and imag values from pSrcA buffer */
308  a = *(pInA + 2u);
309  b = *(pInA + 3u);
310  /* read next real and imag values from pSrcB buffer */
311  c = *(pInB + 2u);
312  d = *(pInB + 3u);
313 
314  /* update pointer */
315  pInA += 4u;
316 
317  /* Multiply and Accumlates */
318  sumReal += (q31_t) a *c;
319  sumImag += (q31_t) a *d;
320  sumReal -= (q31_t) b *d;
321  sumImag += (q31_t) b *c;
322  /* update pointer */
323  pInB += 4u;
324 #else
325  /* read real and imag values from pSrcA and pSrcB buffer */
326  pSourceA = *__SIMD32(pInA)++;
327  pSourceB = *__SIMD32(pInB)++;
328 
329  /* Multiply and Accumlates */
330 #ifdef ARM_MATH_BIG_ENDIAN
331  prod1 = -__SMUSD(pSourceA, pSourceB);
332 #else
333  prod1 = __SMUSD(pSourceA, pSourceB);
334 #endif
335  prod2 = __SMUADX(pSourceA, pSourceB);
336  sumReal += (q63_t) prod1;
337  sumImag += (q63_t) prod2;
338 
339  /* read real and imag values from pSrcA and pSrcB buffer */
340  pSourceA = *__SIMD32(pInA)++;
341  pSourceB = *__SIMD32(pInB)++;
342 
343  /* Multiply and Accumlates */
344 #ifdef ARM_MATH_BIG_ENDIAN
345  prod1 = -__SMUSD(pSourceA, pSourceB);
346 #else
347  prod1 = __SMUSD(pSourceA, pSourceB);
348 #endif
349  prod2 = __SMUADX(pSourceA, pSourceB);
350  sumReal += (q63_t) prod1;
351  sumImag += (q63_t) prod2;
352 
353 #endif /* #ifdef UNALIGNED_SUPPORT_DISABLE */
354 
355  /* Decrement the loop counter */
356  colCnt--;
357  }
358 
359  /* process odd column samples */
360  if((numColsA & 0x1u) > 0u)
361  {
362  /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
363 
364 #ifdef UNALIGNED_SUPPORT_DISABLE
365 
366  /* read real and imag values from pSrcA and pSrcB buffer */
367  a = *pInA++;
368  b = *pInA++;
369  c = *pInB++;
370  d = *pInB++;
371 
372  /* Multiply and Accumlates */
373  sumReal += (q31_t) a *c;
374  sumImag += (q31_t) a *d;
375  sumReal -= (q31_t) b *d;
376  sumImag += (q31_t) b *c;
377 
378 #else
379  /* read real and imag values from pSrcA and pSrcB buffer */
380  pSourceA = *__SIMD32(pInA)++;
381  pSourceB = *__SIMD32(pInB)++;
382 
383  /* Multiply and Accumlates */
384 #ifdef ARM_MATH_BIG_ENDIAN
385  prod1 = -__SMUSD(pSourceA, pSourceB);
386 #else
387  prod1 = __SMUSD(pSourceA, pSourceB);
388 #endif
389  prod2 = __SMUADX(pSourceA, pSourceB);
390  sumReal += (q63_t) prod1;
391  sumImag += (q63_t) prod2;
392 
393 #endif /* #ifdef UNALIGNED_SUPPORT_DISABLE */
394 
395  }
396 
397  /* Saturate and store the result in the destination buffer */
398 
399  *px++ = (q15_t) (__SSAT(sumReal >> 15, 16));
400  *px++ = (q15_t) (__SSAT(sumImag >> 15, 16));
401 
402  /* Decrement the column loop counter */
403  col--;
404 
405  } while(col > 0u);
406 
407  i = i + numColsA;
408 
409  /* Decrement the row loop counter */
410  row--;
411 
412  } while(row > 0u);
413 
414  /* set status as ARM_MATH_SUCCESS */
415  status = ARM_MATH_SUCCESS;
416  }
417 
418  /* Return to application */
419  return (status);
420 }
421 
int64_t q63_t
64-bit fractional data type in 1.63 format.
Definition: arm_math.h:402
arm_status arm_mat_cmplx_mult_q15(const arm_matrix_instance_q15 *pSrcA, const arm_matrix_instance_q15 *pSrcB, arm_matrix_instance_q15 *pDst, q15_t *pScratch)
Q15 Complex matrix multiplication.
int16_t q15_t
16-bit fractional data type in 1.15 format.
Definition: arm_math.h:392
#define __SIMD32(addr)
definition to read/write two 16 bit values.
Definition: arm_math.h:445
Instance structure for the Q15 matrix structure.
Definition: arm_math.h:1390
int32_t q31_t
32-bit fractional data type in 1.31 format.
Definition: arm_math.h:397
arm_status
Error status returned by some functions in the library.
Definition: arm_math.h:373