STM32F769IDiscovery  1.00
uDANTE Audio Networking with STM32F7 DISCO board
arm_fir_q31.c
Go to the documentation of this file.
1 /* ----------------------------------------------------------------------
2 * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
3 *
4 * $Date: 19. March 2015
5 * $Revision: V.1.4.5
6 *
7 * Project: CMSIS DSP Library
8 * Title: arm_fir_q31.c
9 *
10 * Description: Q31 FIR filter processing function.
11 *
12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * - Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * - Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in
21 * the documentation and/or other materials provided with the
22 * distribution.
23 * - Neither the name of ARM LIMITED nor the names of its contributors
24 * may be used to endorse or promote products derived from this
25 * software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 * -------------------------------------------------------------------- */
40 
41 #include "arm_math.h"
42 
73  const arm_fir_instance_q31 * S,
74  q31_t * pSrc,
75  q31_t * pDst,
76  uint32_t blockSize)
77 {
78  q31_t *pState = S->pState; /* State pointer */
79  q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
80  q31_t *pStateCurnt; /* Points to the current sample of the state */
81 
82 
83 #ifndef ARM_MATH_CM0_FAMILY
84 
85  /* Run the below code for Cortex-M4 and Cortex-M3 */
86 
87  q31_t x0, x1, x2; /* Temporary variables to hold state */
88  q31_t c0; /* Temporary variable to hold coefficient value */
89  q31_t *px; /* Temporary pointer for state */
90  q31_t *pb; /* Temporary pointer for coefficient buffer */
91  q63_t acc0, acc1, acc2; /* Accumulators */
92  uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
93  uint32_t i, tapCnt, blkCnt, tapCntN3; /* Loop counters */
94 
95  /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
96  /* pStateCurnt points to the location where the new input data should be written */
97  pStateCurnt = &(S->pState[(numTaps - 1u)]);
98 
99  /* Apply loop unrolling and compute 4 output values simultaneously.
100  * The variables acc0 ... acc3 hold output values that are being computed:
101  *
102  * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
103  * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
104  * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
105  * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
106  */
107  blkCnt = blockSize / 3;
108  blockSize = blockSize - (3 * blkCnt);
109 
110  tapCnt = numTaps / 3;
111  tapCntN3 = numTaps - (3 * tapCnt);
112 
113  /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
114  ** a second loop below computes the remaining 1 to 3 samples. */
115  while(blkCnt > 0u)
116  {
117  /* Copy three new input samples into the state buffer */
118  *pStateCurnt++ = *pSrc++;
119  *pStateCurnt++ = *pSrc++;
120  *pStateCurnt++ = *pSrc++;
121 
122  /* Set all accumulators to zero */
123  acc0 = 0;
124  acc1 = 0;
125  acc2 = 0;
126 
127  /* Initialize state pointer */
128  px = pState;
129 
130  /* Initialize coefficient pointer */
131  pb = pCoeffs;
132 
133  /* Read the first two samples from the state buffer:
134  * x[n-numTaps], x[n-numTaps-1] */
135  x0 = *(px++);
136  x1 = *(px++);
137 
138  /* Loop unrolling. Process 3 taps at a time. */
139  i = tapCnt;
140 
141  while(i > 0u)
142  {
143  /* Read the b[numTaps] coefficient */
144  c0 = *pb;
145 
146  /* Read x[n-numTaps-2] sample */
147  x2 = *(px++);
148 
149  /* Perform the multiply-accumulates */
150  acc0 += ((q63_t) x0 * c0);
151  acc1 += ((q63_t) x1 * c0);
152  acc2 += ((q63_t) x2 * c0);
153 
154  /* Read the coefficient and state */
155  c0 = *(pb + 1u);
156  x0 = *(px++);
157 
158  /* Perform the multiply-accumulates */
159  acc0 += ((q63_t) x1 * c0);
160  acc1 += ((q63_t) x2 * c0);
161  acc2 += ((q63_t) x0 * c0);
162 
163  /* Read the coefficient and state */
164  c0 = *(pb + 2u);
165  x1 = *(px++);
166 
167  /* update coefficient pointer */
168  pb += 3u;
169 
170  /* Perform the multiply-accumulates */
171  acc0 += ((q63_t) x2 * c0);
172  acc1 += ((q63_t) x0 * c0);
173  acc2 += ((q63_t) x1 * c0);
174 
175  /* Decrement the loop counter */
176  i--;
177  }
178 
179  /* If the filter length is not a multiple of 3, compute the remaining filter taps */
180 
181  i = tapCntN3;
182 
183  while(i > 0u)
184  {
185  /* Read coefficients */
186  c0 = *(pb++);
187 
188  /* Fetch 1 state variable */
189  x2 = *(px++);
190 
191  /* Perform the multiply-accumulates */
192  acc0 += ((q63_t) x0 * c0);
193  acc1 += ((q63_t) x1 * c0);
194  acc2 += ((q63_t) x2 * c0);
195 
196  /* Reuse the present sample states for next sample */
197  x0 = x1;
198  x1 = x2;
199 
200  /* Decrement the loop counter */
201  i--;
202  }
203 
204  /* Advance the state pointer by 3 to process the next group of 3 samples */
205  pState = pState + 3;
206 
207  /* The results in the 3 accumulators are in 2.30 format. Convert to 1.31
208  ** Then store the 3 outputs in the destination buffer. */
209  *pDst++ = (q31_t) (acc0 >> 31u);
210  *pDst++ = (q31_t) (acc1 >> 31u);
211  *pDst++ = (q31_t) (acc2 >> 31u);
212 
213  /* Decrement the samples loop counter */
214  blkCnt--;
215  }
216 
217  /* If the blockSize is not a multiple of 3, compute any remaining output samples here.
218  ** No loop unrolling is used. */
219 
220  while(blockSize > 0u)
221  {
222  /* Copy one sample at a time into state buffer */
223  *pStateCurnt++ = *pSrc++;
224 
225  /* Set the accumulator to zero */
226  acc0 = 0;
227 
228  /* Initialize state pointer */
229  px = pState;
230 
231  /* Initialize Coefficient pointer */
232  pb = (pCoeffs);
233 
234  i = numTaps;
235 
236  /* Perform the multiply-accumulates */
237  do
238  {
239  acc0 += (q63_t) * (px++) * (*(pb++));
240  i--;
241  } while(i > 0u);
242 
243  /* The result is in 2.62 format. Convert to 1.31
244  ** Then store the output in the destination buffer. */
245  *pDst++ = (q31_t) (acc0 >> 31u);
246 
247  /* Advance state pointer by 1 for the next sample */
248  pState = pState + 1;
249 
250  /* Decrement the samples loop counter */
251  blockSize--;
252  }
253 
254  /* Processing is complete.
255  ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
256  ** This prepares the state buffer for the next function call. */
257 
258  /* Points to the start of the state buffer */
259  pStateCurnt = S->pState;
260 
261  tapCnt = (numTaps - 1u) >> 2u;
262 
263  /* copy data */
264  while(tapCnt > 0u)
265  {
266  *pStateCurnt++ = *pState++;
267  *pStateCurnt++ = *pState++;
268  *pStateCurnt++ = *pState++;
269  *pStateCurnt++ = *pState++;
270 
271  /* Decrement the loop counter */
272  tapCnt--;
273  }
274 
275  /* Calculate remaining number of copies */
276  tapCnt = (numTaps - 1u) % 0x4u;
277 
278  /* Copy the remaining q31_t data */
279  while(tapCnt > 0u)
280  {
281  *pStateCurnt++ = *pState++;
282 
283  /* Decrement the loop counter */
284  tapCnt--;
285  }
286 
287 #else
288 
289 /* Run the below code for Cortex-M0 */
290 
291  q31_t *px; /* Temporary pointer for state */
292  q31_t *pb; /* Temporary pointer for coefficient buffer */
293  q63_t acc; /* Accumulator */
294  uint32_t numTaps = S->numTaps; /* Length of the filter */
295  uint32_t i, tapCnt, blkCnt; /* Loop counters */
296 
297  /* S->pState buffer contains previous frame (numTaps - 1) samples */
298  /* pStateCurnt points to the location where the new input data should be written */
299  pStateCurnt = &(S->pState[(numTaps - 1u)]);
300 
301  /* Initialize blkCnt with blockSize */
302  blkCnt = blockSize;
303 
304  while(blkCnt > 0u)
305  {
306  /* Copy one sample at a time into state buffer */
307  *pStateCurnt++ = *pSrc++;
308 
309  /* Set the accumulator to zero */
310  acc = 0;
311 
312  /* Initialize state pointer */
313  px = pState;
314 
315  /* Initialize Coefficient pointer */
316  pb = pCoeffs;
317 
318  i = numTaps;
319 
320  /* Perform the multiply-accumulates */
321  do
322  {
323  /* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
324  acc += (q63_t) * px++ * *pb++;
325  i--;
326  } while(i > 0u);
327 
328  /* The result is in 2.62 format. Convert to 1.31
329  ** Then store the output in the destination buffer. */
330  *pDst++ = (q31_t) (acc >> 31u);
331 
332  /* Advance state pointer by 1 for the next sample */
333  pState = pState + 1;
334 
335  /* Decrement the samples loop counter */
336  blkCnt--;
337  }
338 
339  /* Processing is complete.
340  ** Now copy the last numTaps - 1 samples to the starting of the state buffer.
341  ** This prepares the state buffer for the next function call. */
342 
343  /* Points to the start of the state buffer */
344  pStateCurnt = S->pState;
345 
346  /* Copy numTaps number of values */
347  tapCnt = numTaps - 1u;
348 
349  /* Copy the data */
350  while(tapCnt > 0u)
351  {
352  *pStateCurnt++ = *pState++;
353 
354  /* Decrement the loop counter */
355  tapCnt--;
356  }
357 
358 
359 #endif /* #ifndef ARM_MATH_CM0_FAMILY */
360 
361 }
362 
void arm_fir_q31(const arm_fir_instance_q31 *S, q31_t *pSrc, q31_t *pDst, uint32_t blockSize)
Processing function for the Q31 FIR filter.
Definition: arm_fir_q31.c:72
int64_t q63_t
64-bit fractional data type in 1.63 format.
Definition: arm_math.h:402
Instance structure for the Q31 FIR filter.
Definition: arm_math.h:1049
int32_t q31_t
32-bit fractional data type in 1.31 format.
Definition: arm_math.h:397