STM32F769IDiscovery  1.00
uDANTE Audio Networking with STM32F7 DISCO board
arm_fir_lattice_q31.c
Go to the documentation of this file.
1 /* ----------------------------------------------------------------------
2 * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
3 *
4 * $Date: 19. March 2015
5 * $Revision: V.1.4.5
6 *
7 * Project: CMSIS DSP Library
8 * Title: arm_fir_lattice_q31.c
9 *
10 * Description: Q31 FIR lattice filter processing function.
11 *
12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * - Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * - Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in
21 * the documentation and/or other materials provided with the
22 * distribution.
23 * - Neither the name of ARM LIMITED nor the names of its contributors
24 * may be used to endorse or promote products derived from this
25 * software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 * -------------------------------------------------------------------- */
40 
41 #include "arm_math.h"
42 
66 #ifndef ARM_MATH_CM0_FAMILY
67 
68  /* Run the below code for Cortex-M4 and Cortex-M3 */
69 
72  q31_t * pSrc,
73  q31_t * pDst,
74  uint32_t blockSize)
75 {
76  q31_t *pState; /* State pointer */
77  q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
78  q31_t *px; /* temporary state pointer */
79  q31_t *pk; /* temporary coefficient pointer */
80  q31_t fcurr1, fnext1, gcurr1 = 0, gnext1; /* temporary variables for first sample in loop unrolling */
81  q31_t fcurr2, fnext2, gnext2; /* temporary variables for second sample in loop unrolling */
82  uint32_t numStages = S->numStages; /* Length of the filter */
83  uint32_t blkCnt, stageCnt; /* temporary variables for counts */
84  q31_t k;
85 
86  pState = &S->pState[0];
87 
88  blkCnt = blockSize >> 1u;
89 
90  /* First part of the processing with loop unrolling. Compute 2 outputs at a time.
91  a second loop below computes the remaining 1 sample. */
92  while(blkCnt > 0u)
93  {
94  /* f0(n) = x(n) */
95  fcurr1 = *pSrc++;
96 
97  /* f0(n) = x(n) */
98  fcurr2 = *pSrc++;
99 
100  /* Initialize coeff pointer */
101  pk = (pCoeffs);
102 
103  /* Initialize state pointer */
104  px = pState;
105 
106  /* read g0(n - 1) from state buffer */
107  gcurr1 = *px;
108 
109  /* Read the reflection coefficient */
110  k = *pk++;
111 
112  /* for sample 1 processing */
113  /* f1(n) = f0(n) + K1 * g0(n-1) */
114  fnext1 = (q31_t) (((q63_t) gcurr1 * k) >> 32);
115 
116  /* g1(n) = f0(n) * K1 + g0(n-1) */
117  gnext1 = (q31_t) (((q63_t) fcurr1 * (k)) >> 32);
118  fnext1 = fcurr1 + (fnext1 << 1u);
119  gnext1 = gcurr1 + (gnext1 << 1u);
120 
121  /* for sample 1 processing */
122  /* f1(n) = f0(n) + K1 * g0(n-1) */
123  fnext2 = (q31_t) (((q63_t) fcurr1 * k) >> 32);
124 
125  /* g1(n) = f0(n) * K1 + g0(n-1) */
126  gnext2 = (q31_t) (((q63_t) fcurr2 * (k)) >> 32);
127  fnext2 = fcurr2 + (fnext2 << 1u);
128  gnext2 = fcurr1 + (gnext2 << 1u);
129 
130  /* save g1(n) in state buffer */
131  *px++ = fcurr2;
132 
133  /* f1(n) is saved in fcurr1
134  for next stage processing */
135  fcurr1 = fnext1;
136  fcurr2 = fnext2;
137 
138  stageCnt = (numStages - 1u);
139 
140  /* stage loop */
141  while(stageCnt > 0u)
142  {
143 
144  /* Read the reflection coefficient */
145  k = *pk++;
146 
147  /* read g2(n) from state buffer */
148  gcurr1 = *px;
149 
150  /* save g1(n) in state buffer */
151  *px++ = gnext2;
152 
153  /* Sample processing for K2, K3.... */
154  /* f2(n) = f1(n) + K2 * g1(n-1) */
155  fnext1 = (q31_t) (((q63_t) gcurr1 * k) >> 32);
156  fnext2 = (q31_t) (((q63_t) gnext1 * k) >> 32);
157 
158  fnext1 = fcurr1 + (fnext1 << 1u);
159  fnext2 = fcurr2 + (fnext2 << 1u);
160 
161  /* g2(n) = f1(n) * K2 + g1(n-1) */
162  gnext2 = (q31_t) (((q63_t) fcurr2 * (k)) >> 32);
163  gnext2 = gnext1 + (gnext2 << 1u);
164 
165  /* g2(n) = f1(n) * K2 + g1(n-1) */
166  gnext1 = (q31_t) (((q63_t) fcurr1 * (k)) >> 32);
167  gnext1 = gcurr1 + (gnext1 << 1u);
168 
169  /* f1(n) is saved in fcurr1
170  for next stage processing */
171  fcurr1 = fnext1;
172  fcurr2 = fnext2;
173 
174  stageCnt--;
175 
176  }
177 
178  /* y(n) = fN(n) */
179  *pDst++ = fcurr1;
180  *pDst++ = fcurr2;
181 
182  blkCnt--;
183 
184  }
185 
186  /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
187  ** No loop unrolling is used. */
188  blkCnt = blockSize % 0x2u;
189 
190  while(blkCnt > 0u)
191  {
192  /* f0(n) = x(n) */
193  fcurr1 = *pSrc++;
194 
195  /* Initialize coeff pointer */
196  pk = (pCoeffs);
197 
198  /* Initialize state pointer */
199  px = pState;
200 
201  /* read g0(n - 1) from state buffer */
202  gcurr1 = *px;
203 
204  /* Read the reflection coefficient */
205  k = *pk++;
206 
207  /* for sample 1 processing */
208  /* f1(n) = f0(n) + K1 * g0(n-1) */
209  fnext1 = (q31_t) (((q63_t) gcurr1 * k) >> 32);
210  fnext1 = fcurr1 + (fnext1 << 1u);
211 
212  /* g1(n) = f0(n) * K1 + g0(n-1) */
213  gnext1 = (q31_t) (((q63_t) fcurr1 * (k)) >> 32);
214  gnext1 = gcurr1 + (gnext1 << 1u);
215 
216  /* save g1(n) in state buffer */
217  *px++ = fcurr1;
218 
219  /* f1(n) is saved in fcurr1
220  for next stage processing */
221  fcurr1 = fnext1;
222 
223  stageCnt = (numStages - 1u);
224 
225  /* stage loop */
226  while(stageCnt > 0u)
227  {
228  /* Read the reflection coefficient */
229  k = *pk++;
230 
231  /* read g2(n) from state buffer */
232  gcurr1 = *px;
233 
234  /* save g1(n) in state buffer */
235  *px++ = gnext1;
236 
237  /* Sample processing for K2, K3.... */
238  /* f2(n) = f1(n) + K2 * g1(n-1) */
239  fnext1 = (q31_t) (((q63_t) gcurr1 * k) >> 32);
240  fnext1 = fcurr1 + (fnext1 << 1u);
241 
242  /* g2(n) = f1(n) * K2 + g1(n-1) */
243  gnext1 = (q31_t) (((q63_t) fcurr1 * (k)) >> 32);
244  gnext1 = gcurr1 + (gnext1 << 1u);
245 
246  /* f1(n) is saved in fcurr1
247  for next stage processing */
248  fcurr1 = fnext1;
249 
250  stageCnt--;
251 
252  }
253 
254 
255  /* y(n) = fN(n) */
256  *pDst++ = fcurr1;
257 
258  blkCnt--;
259 
260  }
261 
262 
263 }
264 
265 
266 #else
267 
268 /* Run the below code for Cortex-M0 */
269 
272  q31_t * pSrc,
273  q31_t * pDst,
274  uint32_t blockSize)
275 {
276  q31_t *pState; /* State pointer */
277  q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
278  q31_t *px; /* temporary state pointer */
279  q31_t *pk; /* temporary coefficient pointer */
280  q31_t fcurr, fnext, gcurr, gnext; /* temporary variables */
281  uint32_t numStages = S->numStages; /* Length of the filter */
282  uint32_t blkCnt, stageCnt; /* temporary variables for counts */
283 
284  pState = &S->pState[0];
285 
286  blkCnt = blockSize;
287 
288  while(blkCnt > 0u)
289  {
290  /* f0(n) = x(n) */
291  fcurr = *pSrc++;
292 
293  /* Initialize coeff pointer */
294  pk = (pCoeffs);
295 
296  /* Initialize state pointer */
297  px = pState;
298 
299  /* read g0(n-1) from state buffer */
300  gcurr = *px;
301 
302  /* for sample 1 processing */
303  /* f1(n) = f0(n) + K1 * g0(n-1) */
304  fnext = (q31_t) (((q63_t) gcurr * (*pk)) >> 31) + fcurr;
305  /* g1(n) = f0(n) * K1 + g0(n-1) */
306  gnext = (q31_t) (((q63_t) fcurr * (*pk++)) >> 31) + gcurr;
307  /* save g1(n) in state buffer */
308  *px++ = fcurr;
309 
310  /* f1(n) is saved in fcurr1
311  for next stage processing */
312  fcurr = fnext;
313 
314  stageCnt = (numStages - 1u);
315 
316  /* stage loop */
317  while(stageCnt > 0u)
318  {
319  /* read g2(n) from state buffer */
320  gcurr = *px;
321 
322  /* save g1(n) in state buffer */
323  *px++ = gnext;
324 
325  /* Sample processing for K2, K3.... */
326  /* f2(n) = f1(n) + K2 * g1(n-1) */
327  fnext = (q31_t) (((q63_t) gcurr * (*pk)) >> 31) + fcurr;
328  /* g2(n) = f1(n) * K2 + g1(n-1) */
329  gnext = (q31_t) (((q63_t) fcurr * (*pk++)) >> 31) + gcurr;
330 
331  /* f1(n) is saved in fcurr1
332  for next stage processing */
333  fcurr = fnext;
334 
335  stageCnt--;
336 
337  }
338 
339  /* y(n) = fN(n) */
340  *pDst++ = fcurr;
341 
342  blkCnt--;
343 
344  }
345 
346 }
347 
348 #endif /* #ifndef ARM_MATH_CM0_FAMILY */
349 
350 
Instance structure for the Q31 FIR lattice filter.
Definition: arm_math.h:3733
int64_t q63_t
64-bit fractional data type in 1.63 format.
Definition: arm_math.h:402
void arm_fir_lattice_q31(const arm_fir_lattice_instance_q31 *S, q31_t *pSrc, q31_t *pDst, uint32_t blockSize)
Processing function for the Q31 FIR lattice filter.
int32_t q31_t
32-bit fractional data type in 1.31 format.
Definition: arm_math.h:397