STM32F769IDiscovery  1.00
uDANTE Audio Networking with STM32F7 DISCO board
arm_fir_interpolate_q31.c
Go to the documentation of this file.
1 /*-----------------------------------------------------------------------------
2 * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
3 *
4 * $Date: 19. March 2015
5 * $Revision: V.1.4.5
6 *
7 * Project: CMSIS DSP Library
8 * Title: arm_fir_interpolate_q31.c
9 *
10 * Description: Q31 FIR interpolation.
11 *
12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * - Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * - Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in
21 * the documentation and/or other materials provided with the
22 * distribution.
23 * - Neither the name of ARM LIMITED nor the names of its contributors
24 * may be used to endorse or promote products derived from this
25 * software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 * ---------------------------------------------------------------------------*/
40 
41 #include "arm_math.h"
42 
70 #ifndef ARM_MATH_CM0_FAMILY
71 
72  /* Run the below code for Cortex-M4 and Cortex-M3 */
73 
76  q31_t * pSrc,
77  q31_t * pDst,
78  uint32_t blockSize)
79 {
80  q31_t *pState = S->pState; /* State pointer */
81  q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
82  q31_t *pStateCurnt; /* Points to the current sample of the state */
83  q31_t *ptr1, *ptr2; /* Temporary pointers for state and coefficient buffers */
84  q63_t sum0; /* Accumulators */
85  q31_t x0, c0; /* Temporary variables to hold state and coefficient values */
86  uint32_t i, blkCnt, j; /* Loop counters */
87  uint16_t phaseLen = S->phaseLength, tapCnt; /* Length of each polyphase filter component */
88 
89  uint32_t blkCntN2;
90  q63_t acc0, acc1;
91  q31_t x1;
92 
93  /* S->pState buffer contains previous frame (phaseLen - 1) samples */
94  /* pStateCurnt points to the location where the new input data should be written */
95  pStateCurnt = S->pState + ((q31_t) phaseLen - 1);
96 
97  /* Initialise blkCnt */
98  blkCnt = blockSize / 2;
99  blkCntN2 = blockSize - (2 * blkCnt);
100 
101  /* Samples loop unrolled by 2 */
102  while(blkCnt > 0u)
103  {
104  /* Copy new input sample into the state buffer */
105  *pStateCurnt++ = *pSrc++;
106  *pStateCurnt++ = *pSrc++;
107 
108  /* Address modifier index of coefficient buffer */
109  j = 1u;
110 
111  /* Loop over the Interpolation factor. */
112  i = (S->L);
113 
114  while(i > 0u)
115  {
116  /* Set accumulator to zero */
117  acc0 = 0;
118  acc1 = 0;
119 
120  /* Initialize state pointer */
121  ptr1 = pState;
122 
123  /* Initialize coefficient pointer */
124  ptr2 = pCoeffs + (S->L - j);
125 
126  /* Loop over the polyPhase length. Unroll by a factor of 4.
127  ** Repeat until we've computed numTaps-(4*S->L) coefficients. */
128  tapCnt = phaseLen >> 2u;
129 
130  x0 = *(ptr1++);
131 
132  while(tapCnt > 0u)
133  {
134 
135  /* Read the input sample */
136  x1 = *(ptr1++);
137 
138  /* Read the coefficient */
139  c0 = *(ptr2);
140 
141  /* Perform the multiply-accumulate */
142  acc0 += (q63_t) x0 *c0;
143  acc1 += (q63_t) x1 *c0;
144 
145 
146  /* Read the coefficient */
147  c0 = *(ptr2 + S->L);
148 
149  /* Read the input sample */
150  x0 = *(ptr1++);
151 
152  /* Perform the multiply-accumulate */
153  acc0 += (q63_t) x1 *c0;
154  acc1 += (q63_t) x0 *c0;
155 
156 
157  /* Read the coefficient */
158  c0 = *(ptr2 + S->L * 2);
159 
160  /* Read the input sample */
161  x1 = *(ptr1++);
162 
163  /* Perform the multiply-accumulate */
164  acc0 += (q63_t) x0 *c0;
165  acc1 += (q63_t) x1 *c0;
166 
167  /* Read the coefficient */
168  c0 = *(ptr2 + S->L * 3);
169 
170  /* Read the input sample */
171  x0 = *(ptr1++);
172 
173  /* Perform the multiply-accumulate */
174  acc0 += (q63_t) x1 *c0;
175  acc1 += (q63_t) x0 *c0;
176 
177 
178  /* Upsampling is done by stuffing L-1 zeros between each sample.
179  * So instead of multiplying zeros with coefficients,
180  * Increment the coefficient pointer by interpolation factor times. */
181  ptr2 += 4 * S->L;
182 
183  /* Decrement the loop counter */
184  tapCnt--;
185  }
186 
187  /* If the polyPhase length is not a multiple of 4, compute the remaining filter taps */
188  tapCnt = phaseLen % 0x4u;
189 
190  while(tapCnt > 0u)
191  {
192 
193  /* Read the input sample */
194  x1 = *(ptr1++);
195 
196  /* Read the coefficient */
197  c0 = *(ptr2);
198 
199  /* Perform the multiply-accumulate */
200  acc0 += (q63_t) x0 *c0;
201  acc1 += (q63_t) x1 *c0;
202 
203  /* Increment the coefficient pointer by interpolation factor times. */
204  ptr2 += S->L;
205 
206  /* update states for next sample processing */
207  x0 = x1;
208 
209  /* Decrement the loop counter */
210  tapCnt--;
211  }
212 
213  /* The result is in the accumulator, store in the destination buffer. */
214  *pDst = (q31_t) (acc0 >> 31);
215  *(pDst + S->L) = (q31_t) (acc1 >> 31);
216 
217 
218  pDst++;
219 
220  /* Increment the address modifier index of coefficient buffer */
221  j++;
222 
223  /* Decrement the loop counter */
224  i--;
225  }
226 
227  /* Advance the state pointer by 1
228  * to process the next group of interpolation factor number samples */
229  pState = pState + 2;
230 
231  pDst += S->L;
232 
233  /* Decrement the loop counter */
234  blkCnt--;
235  }
236 
237  /* If the blockSize is not a multiple of 2, compute any remaining output samples here.
238  ** No loop unrolling is used. */
239  blkCnt = blkCntN2;
240 
241  /* Loop over the blockSize. */
242  while(blkCnt > 0u)
243  {
244  /* Copy new input sample into the state buffer */
245  *pStateCurnt++ = *pSrc++;
246 
247  /* Address modifier index of coefficient buffer */
248  j = 1u;
249 
250  /* Loop over the Interpolation factor. */
251  i = S->L;
252  while(i > 0u)
253  {
254  /* Set accumulator to zero */
255  sum0 = 0;
256 
257  /* Initialize state pointer */
258  ptr1 = pState;
259 
260  /* Initialize coefficient pointer */
261  ptr2 = pCoeffs + (S->L - j);
262 
263  /* Loop over the polyPhase length. Unroll by a factor of 4.
264  ** Repeat until we've computed numTaps-(4*S->L) coefficients. */
265  tapCnt = phaseLen >> 2;
266  while(tapCnt > 0u)
267  {
268 
269  /* Read the coefficient */
270  c0 = *(ptr2);
271 
272  /* Upsampling is done by stuffing L-1 zeros between each sample.
273  * So instead of multiplying zeros with coefficients,
274  * Increment the coefficient pointer by interpolation factor times. */
275  ptr2 += S->L;
276 
277  /* Read the input sample */
278  x0 = *(ptr1++);
279 
280  /* Perform the multiply-accumulate */
281  sum0 += (q63_t) x0 *c0;
282 
283  /* Read the coefficient */
284  c0 = *(ptr2);
285 
286  /* Increment the coefficient pointer by interpolation factor times. */
287  ptr2 += S->L;
288 
289  /* Read the input sample */
290  x0 = *(ptr1++);
291 
292  /* Perform the multiply-accumulate */
293  sum0 += (q63_t) x0 *c0;
294 
295  /* Read the coefficient */
296  c0 = *(ptr2);
297 
298  /* Increment the coefficient pointer by interpolation factor times. */
299  ptr2 += S->L;
300 
301  /* Read the input sample */
302  x0 = *(ptr1++);
303 
304  /* Perform the multiply-accumulate */
305  sum0 += (q63_t) x0 *c0;
306 
307  /* Read the coefficient */
308  c0 = *(ptr2);
309 
310  /* Increment the coefficient pointer by interpolation factor times. */
311  ptr2 += S->L;
312 
313  /* Read the input sample */
314  x0 = *(ptr1++);
315 
316  /* Perform the multiply-accumulate */
317  sum0 += (q63_t) x0 *c0;
318 
319  /* Decrement the loop counter */
320  tapCnt--;
321  }
322 
323  /* If the polyPhase length is not a multiple of 4, compute the remaining filter taps */
324  tapCnt = phaseLen & 0x3u;
325 
326  while(tapCnt > 0u)
327  {
328  /* Read the coefficient */
329  c0 = *(ptr2);
330 
331  /* Increment the coefficient pointer by interpolation factor times. */
332  ptr2 += S->L;
333 
334  /* Read the input sample */
335  x0 = *(ptr1++);
336 
337  /* Perform the multiply-accumulate */
338  sum0 += (q63_t) x0 *c0;
339 
340  /* Decrement the loop counter */
341  tapCnt--;
342  }
343 
344  /* The result is in the accumulator, store in the destination buffer. */
345  *pDst++ = (q31_t) (sum0 >> 31);
346 
347  /* Increment the address modifier index of coefficient buffer */
348  j++;
349 
350  /* Decrement the loop counter */
351  i--;
352  }
353 
354  /* Advance the state pointer by 1
355  * to process the next group of interpolation factor number samples */
356  pState = pState + 1;
357 
358  /* Decrement the loop counter */
359  blkCnt--;
360  }
361 
362  /* Processing is complete.
363  ** Now copy the last phaseLen - 1 samples to the satrt of the state buffer.
364  ** This prepares the state buffer for the next function call. */
365 
366  /* Points to the start of the state buffer */
367  pStateCurnt = S->pState;
368 
369  tapCnt = (phaseLen - 1u) >> 2u;
370 
371  /* copy data */
372  while(tapCnt > 0u)
373  {
374  *pStateCurnt++ = *pState++;
375  *pStateCurnt++ = *pState++;
376  *pStateCurnt++ = *pState++;
377  *pStateCurnt++ = *pState++;
378 
379  /* Decrement the loop counter */
380  tapCnt--;
381  }
382 
383  tapCnt = (phaseLen - 1u) % 0x04u;
384 
385  /* copy data */
386  while(tapCnt > 0u)
387  {
388  *pStateCurnt++ = *pState++;
389 
390  /* Decrement the loop counter */
391  tapCnt--;
392  }
393 
394 }
395 
396 
397 #else
398 
401  q31_t * pSrc,
402  q31_t * pDst,
403  uint32_t blockSize)
404 {
405  q31_t *pState = S->pState; /* State pointer */
406  q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
407  q31_t *pStateCurnt; /* Points to the current sample of the state */
408  q31_t *ptr1, *ptr2; /* Temporary pointers for state and coefficient buffers */
409 
410  /* Run the below code for Cortex-M0 */
411 
412  q63_t sum; /* Accumulator */
413  q31_t x0, c0; /* Temporary variables to hold state and coefficient values */
414  uint32_t i, blkCnt; /* Loop counters */
415  uint16_t phaseLen = S->phaseLength, tapCnt; /* Length of each polyphase filter component */
416 
417 
418  /* S->pState buffer contains previous frame (phaseLen - 1) samples */
419  /* pStateCurnt points to the location where the new input data should be written */
420  pStateCurnt = S->pState + ((q31_t) phaseLen - 1);
421 
422  /* Total number of intput samples */
423  blkCnt = blockSize;
424 
425  /* Loop over the blockSize. */
426  while(blkCnt > 0u)
427  {
428  /* Copy new input sample into the state buffer */
429  *pStateCurnt++ = *pSrc++;
430 
431  /* Loop over the Interpolation factor. */
432  i = S->L;
433 
434  while(i > 0u)
435  {
436  /* Set accumulator to zero */
437  sum = 0;
438 
439  /* Initialize state pointer */
440  ptr1 = pState;
441 
442  /* Initialize coefficient pointer */
443  ptr2 = pCoeffs + (i - 1u);
444 
445  tapCnt = phaseLen;
446 
447  while(tapCnt > 0u)
448  {
449  /* Read the coefficient */
450  c0 = *(ptr2);
451 
452  /* Increment the coefficient pointer by interpolation factor times. */
453  ptr2 += S->L;
454 
455  /* Read the input sample */
456  x0 = *ptr1++;
457 
458  /* Perform the multiply-accumulate */
459  sum += (q63_t) x0 *c0;
460 
461  /* Decrement the loop counter */
462  tapCnt--;
463  }
464 
465  /* The result is in the accumulator, store in the destination buffer. */
466  *pDst++ = (q31_t) (sum >> 31);
467 
468  /* Decrement the loop counter */
469  i--;
470  }
471 
472  /* Advance the state pointer by 1
473  * to process the next group of interpolation factor number samples */
474  pState = pState + 1;
475 
476  /* Decrement the loop counter */
477  blkCnt--;
478  }
479 
480  /* Processing is complete.
481  ** Now copy the last phaseLen - 1 samples to the satrt of the state buffer.
482  ** This prepares the state buffer for the next function call. */
483 
484  /* Points to the start of the state buffer */
485  pStateCurnt = S->pState;
486 
487  tapCnt = phaseLen - 1u;
488 
489  /* copy data */
490  while(tapCnt > 0u)
491  {
492  *pStateCurnt++ = *pState++;
493 
494  /* Decrement the loop counter */
495  tapCnt--;
496  }
497 
498 }
499 
500 #endif /* #ifndef ARM_MATH_CM0_FAMILY */
501 
int64_t q63_t
64-bit fractional data type in 1.63 format.
Definition: arm_math.h:402
void arm_fir_interpolate_q31(const arm_fir_interpolate_instance_q31 *S, q31_t *pSrc, q31_t *pDst, uint32_t blockSize)
Processing function for the Q31 FIR interpolator.
Instance structure for the Q31 FIR interpolator.
Definition: arm_math.h:3443
int32_t q31_t
32-bit fractional data type in 1.31 format.
Definition: arm_math.h:397