STM32F769IDiscovery  1.00
uDANTE Audio Networking with STM32F7 DISCO board
arm_dct4_q15.c
Go to the documentation of this file.
1 /* ----------------------------------------------------------------------
2 * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
3 *
4 * $Date: 19. March 2015
5 * $Revision: V.1.4.5
6 *
7 * Project: CMSIS DSP Library
8 * Title: arm_dct4_q15.c
9 *
10 * Description: Processing function of DCT4 & IDCT4 Q15.
11 *
12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * - Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * - Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in
21 * the documentation and/or other materials provided with the
22 * distribution.
23 * - Neither the name of ARM LIMITED nor the names of its contributors
24 * may be used to endorse or promote products derived from this
25 * software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 * -------------------------------------------------------------------- */
40 
41 #include "arm_math.h"
42 
64  const arm_dct4_instance_q15 * S,
65  q15_t * pState,
66  q15_t * pInlineBuffer)
67 {
68  uint32_t i; /* Loop counter */
69  q15_t *weights = S->pTwiddle; /* Pointer to the Weights table */
70  q15_t *cosFact = S->pCosFactor; /* Pointer to the cos factors table */
71  q15_t *pS1, *pS2, *pbuff; /* Temporary pointers for input buffer and pState buffer */
72  q15_t in; /* Temporary variable */
73 
74 
75  /* DCT4 computation involves DCT2 (which is calculated using RFFT)
76  * along with some pre-processing and post-processing.
77  * Computational procedure is explained as follows:
78  * (a) Pre-processing involves multiplying input with cos factor,
79  * r(n) = 2 * u(n) * cos(pi*(2*n+1)/(4*n))
80  * where,
81  * r(n) -- output of preprocessing
82  * u(n) -- input to preprocessing(actual Source buffer)
83  * (b) Calculation of DCT2 using FFT is divided into three steps:
84  * Step1: Re-ordering of even and odd elements of input.
85  * Step2: Calculating FFT of the re-ordered input.
86  * Step3: Taking the real part of the product of FFT output and weights.
87  * (c) Post-processing - DCT4 can be obtained from DCT2 output using the following equation:
88  * Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0)
89  * where,
90  * Y4 -- DCT4 output, Y2 -- DCT2 output
91  * (d) Multiplying the output with the normalizing factor sqrt(2/N).
92  */
93 
94  /*-------- Pre-processing ------------*/
95  /* Multiplying input with cos factor i.e. r(n) = 2 * x(n) * cos(pi*(2*n+1)/(4*n)) */
96  arm_mult_q15(pInlineBuffer, cosFact, pInlineBuffer, S->N);
97  arm_shift_q15(pInlineBuffer, 1, pInlineBuffer, S->N);
98 
99  /* ----------------------------------------------------------------
100  * Step1: Re-ordering of even and odd elements as
101  * pState[i] = pInlineBuffer[2*i] and
102  * pState[N-i-1] = pInlineBuffer[2*i+1] where i = 0 to N/2
103  ---------------------------------------------------------------------*/
104 
105  /* pS1 initialized to pState */
106  pS1 = pState;
107 
108  /* pS2 initialized to pState+N-1, so that it points to the end of the state buffer */
109  pS2 = pState + (S->N - 1u);
110 
111  /* pbuff initialized to input buffer */
112  pbuff = pInlineBuffer;
113 
114 
115 #ifndef ARM_MATH_CM0_FAMILY
116 
117  /* Run the below code for Cortex-M4 and Cortex-M3 */
118 
119  /* Initializing the loop counter to N/2 >> 2 for loop unrolling by 4 */
120  i = (uint32_t) S->Nby2 >> 2u;
121 
122  /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
123  ** a second loop below computes the remaining 1 to 3 samples. */
124  do
125  {
126  /* Re-ordering of even and odd elements */
127  /* pState[i] = pInlineBuffer[2*i] */
128  *pS1++ = *pbuff++;
129  /* pState[N-i-1] = pInlineBuffer[2*i+1] */
130  *pS2-- = *pbuff++;
131 
132  *pS1++ = *pbuff++;
133  *pS2-- = *pbuff++;
134 
135  *pS1++ = *pbuff++;
136  *pS2-- = *pbuff++;
137 
138  *pS1++ = *pbuff++;
139  *pS2-- = *pbuff++;
140 
141  /* Decrement the loop counter */
142  i--;
143  } while(i > 0u);
144 
145  /* pbuff initialized to input buffer */
146  pbuff = pInlineBuffer;
147 
148  /* pS1 initialized to pState */
149  pS1 = pState;
150 
151  /* Initializing the loop counter to N/4 instead of N for loop unrolling */
152  i = (uint32_t) S->N >> 2u;
153 
154  /* Processing with loop unrolling 4 times as N is always multiple of 4.
155  * Compute 4 outputs at a time */
156  do
157  {
158  /* Writing the re-ordered output back to inplace input buffer */
159  *pbuff++ = *pS1++;
160  *pbuff++ = *pS1++;
161  *pbuff++ = *pS1++;
162  *pbuff++ = *pS1++;
163 
164  /* Decrement the loop counter */
165  i--;
166  } while(i > 0u);
167 
168 
169  /* ---------------------------------------------------------
170  * Step2: Calculate RFFT for N-point input
171  * ---------------------------------------------------------- */
172  /* pInlineBuffer is real input of length N , pState is the complex output of length 2N */
173  arm_rfft_q15(S->pRfft, pInlineBuffer, pState);
174 
175  /*----------------------------------------------------------------------
176  * Step3: Multiply the FFT output with the weights.
177  *----------------------------------------------------------------------*/
178  arm_cmplx_mult_cmplx_q15(pState, weights, pState, S->N);
179 
180  /* The output of complex multiplication is in 3.13 format.
181  * Hence changing the format of N (i.e. 2*N elements) complex numbers to 1.15 format by shifting left by 2 bits. */
182  arm_shift_q15(pState, 2, pState, S->N * 2);
183 
184  /* ----------- Post-processing ---------- */
185  /* DCT-IV can be obtained from DCT-II by the equation,
186  * Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0)
187  * Hence, Y4(0) = Y2(0)/2 */
188  /* Getting only real part from the output and Converting to DCT-IV */
189 
190  /* Initializing the loop counter to N >> 2 for loop unrolling by 4 */
191  i = ((uint32_t) S->N - 1u) >> 2u;
192 
193  /* pbuff initialized to input buffer. */
194  pbuff = pInlineBuffer;
195 
196  /* pS1 initialized to pState */
197  pS1 = pState;
198 
199  /* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */
200  in = *pS1++ >> 1u;
201  /* input buffer acts as inplace, so output values are stored in the input itself. */
202  *pbuff++ = in;
203 
204  /* pState pointer is incremented twice as the real values are located alternatively in the array */
205  pS1++;
206 
207  /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
208  ** a second loop below computes the remaining 1 to 3 samples. */
209  do
210  {
211  /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */
212  /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */
213  in = *pS1++ - in;
214  *pbuff++ = in;
215  /* points to the next real value */
216  pS1++;
217 
218  in = *pS1++ - in;
219  *pbuff++ = in;
220  pS1++;
221 
222  in = *pS1++ - in;
223  *pbuff++ = in;
224  pS1++;
225 
226  in = *pS1++ - in;
227  *pbuff++ = in;
228  pS1++;
229 
230  /* Decrement the loop counter */
231  i--;
232  } while(i > 0u);
233 
234  /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
235  ** No loop unrolling is used. */
236  i = ((uint32_t) S->N - 1u) % 0x4u;
237 
238  while(i > 0u)
239  {
240  /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */
241  /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */
242  in = *pS1++ - in;
243  *pbuff++ = in;
244  /* points to the next real value */
245  pS1++;
246 
247  /* Decrement the loop counter */
248  i--;
249  }
250 
251 
252  /*------------ Normalizing the output by multiplying with the normalizing factor ----------*/
253 
254  /* Initializing the loop counter to N/4 instead of N for loop unrolling */
255  i = (uint32_t) S->N >> 2u;
256 
257  /* pbuff initialized to the pInlineBuffer(now contains the output values) */
258  pbuff = pInlineBuffer;
259 
260  /* Processing with loop unrolling 4 times as N is always multiple of 4. Compute 4 outputs at a time */
261  do
262  {
263  /* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */
264  in = *pbuff;
265  *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15));
266 
267  in = *pbuff;
268  *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15));
269 
270  in = *pbuff;
271  *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15));
272 
273  in = *pbuff;
274  *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15));
275 
276  /* Decrement the loop counter */
277  i--;
278  } while(i > 0u);
279 
280 
281 #else
282 
283  /* Run the below code for Cortex-M0 */
284 
285  /* Initializing the loop counter to N/2 */
286  i = (uint32_t) S->Nby2;
287 
288  do
289  {
290  /* Re-ordering of even and odd elements */
291  /* pState[i] = pInlineBuffer[2*i] */
292  *pS1++ = *pbuff++;
293  /* pState[N-i-1] = pInlineBuffer[2*i+1] */
294  *pS2-- = *pbuff++;
295 
296  /* Decrement the loop counter */
297  i--;
298  } while(i > 0u);
299 
300  /* pbuff initialized to input buffer */
301  pbuff = pInlineBuffer;
302 
303  /* pS1 initialized to pState */
304  pS1 = pState;
305 
306  /* Initializing the loop counter */
307  i = (uint32_t) S->N;
308 
309  do
310  {
311  /* Writing the re-ordered output back to inplace input buffer */
312  *pbuff++ = *pS1++;
313 
314  /* Decrement the loop counter */
315  i--;
316  } while(i > 0u);
317 
318 
319  /* ---------------------------------------------------------
320  * Step2: Calculate RFFT for N-point input
321  * ---------------------------------------------------------- */
322  /* pInlineBuffer is real input of length N , pState is the complex output of length 2N */
323  arm_rfft_q15(S->pRfft, pInlineBuffer, pState);
324 
325  /*----------------------------------------------------------------------
326  * Step3: Multiply the FFT output with the weights.
327  *----------------------------------------------------------------------*/
328  arm_cmplx_mult_cmplx_q15(pState, weights, pState, S->N);
329 
330  /* The output of complex multiplication is in 3.13 format.
331  * Hence changing the format of N (i.e. 2*N elements) complex numbers to 1.15 format by shifting left by 2 bits. */
332  arm_shift_q15(pState, 2, pState, S->N * 2);
333 
334  /* ----------- Post-processing ---------- */
335  /* DCT-IV can be obtained from DCT-II by the equation,
336  * Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0)
337  * Hence, Y4(0) = Y2(0)/2 */
338  /* Getting only real part from the output and Converting to DCT-IV */
339 
340  /* Initializing the loop counter */
341  i = ((uint32_t) S->N - 1u);
342 
343  /* pbuff initialized to input buffer. */
344  pbuff = pInlineBuffer;
345 
346  /* pS1 initialized to pState */
347  pS1 = pState;
348 
349  /* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */
350  in = *pS1++ >> 1u;
351  /* input buffer acts as inplace, so output values are stored in the input itself. */
352  *pbuff++ = in;
353 
354  /* pState pointer is incremented twice as the real values are located alternatively in the array */
355  pS1++;
356 
357  do
358  {
359  /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */
360  /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */
361  in = *pS1++ - in;
362  *pbuff++ = in;
363  /* points to the next real value */
364  pS1++;
365 
366  /* Decrement the loop counter */
367  i--;
368  } while(i > 0u);
369 
370  /*------------ Normalizing the output by multiplying with the normalizing factor ----------*/
371 
372  /* Initializing the loop counter */
373  i = (uint32_t) S->N;
374 
375  /* pbuff initialized to the pInlineBuffer(now contains the output values) */
376  pbuff = pInlineBuffer;
377 
378  do
379  {
380  /* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */
381  in = *pbuff;
382  *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15));
383 
384  /* Decrement the loop counter */
385  i--;
386  } while(i > 0u);
387 
388 #endif /* #ifndef ARM_MATH_CM0_FAMILY */
389 
390 }
391 
void arm_cmplx_mult_cmplx_q15(q15_t *pSrcA, q15_t *pSrcB, q15_t *pDst, uint32_t numSamples)
Q15 complex-by-complex multiplication.
int16_t q15_t
16-bit fractional data type in 1.15 format.
Definition: arm_math.h:392
void arm_rfft_q15(const arm_rfft_instance_q15 *S, q15_t *pSrc, q15_t *pDst)
Processing function for the Q15 RFFT/RIFFT.
Definition: arm_rfft_q15.c:87
void arm_mult_q15(q15_t *pSrcA, q15_t *pSrcB, q15_t *pDst, uint32_t blockSize)
Q15 vector multiplication.
Definition: arm_mult_q15.c:67
int32_t q31_t
32-bit fractional data type in 1.31 format.
Definition: arm_math.h:397
void arm_shift_q15(q15_t *pSrc, int8_t shiftBits, q15_t *pDst, uint32_t blockSize)
Shifts the elements of a Q15 vector a specified number of bits.
Definition: arm_shift_q15.c:66
Instance structure for the Q15 DCT4/IDCT4 function.
Definition: arm_math.h:2346
void arm_dct4_q15(const arm_dct4_instance_q15 *S, q15_t *pState, q15_t *pInlineBuffer)
Processing function for the Q15 DCT4/IDCT4.
Definition: arm_dct4_q15.c:63