STM32F769IDiscovery  1.00
uDANTE Audio Networking with STM32F7 DISCO board
arm_correlate_q7.c
Go to the documentation of this file.
1 /* ----------------------------------------------------------------------
2 * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
3 *
4 * $Date: 19. March 2015
5 * $Revision: V.1.4.5
6 *
7 * Project: CMSIS DSP Library
8 * Title: arm_correlate_q7.c
9 *
10 * Description: Correlation of Q7 sequences.
11 *
12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * - Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * - Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in
21 * the documentation and/or other materials provided with the
22 * distribution.
23 * - Neither the name of ARM LIMITED nor the names of its contributors
24 * may be used to endorse or promote products derived from this
25 * software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 * -------------------------------------------------------------------- */
40 
41 #include "arm_math.h"
42 
77  q7_t * pSrcA,
78  uint32_t srcALen,
79  q7_t * pSrcB,
80  uint32_t srcBLen,
81  q7_t * pDst)
82 {
83 
84 
85 #ifndef ARM_MATH_CM0_FAMILY
86 
87  /* Run the below code for Cortex-M4 and Cortex-M3 */
88 
89  q7_t *pIn1; /* inputA pointer */
90  q7_t *pIn2; /* inputB pointer */
91  q7_t *pOut = pDst; /* output pointer */
92  q7_t *px; /* Intermediate inputA pointer */
93  q7_t *py; /* Intermediate inputB pointer */
94  q7_t *pSrc1; /* Intermediate pointers */
95  q31_t sum, acc0, acc1, acc2, acc3; /* Accumulators */
96  q31_t input1, input2; /* temporary variables */
97  q15_t in1, in2; /* temporary variables */
98  q7_t x0, x1, x2, x3, c0, c1; /* temporary variables for holding input and coefficient values */
99  uint32_t j, k = 0u, count, blkCnt, outBlockSize, blockSize1, blockSize2, blockSize3; /* loop counter */
100  int32_t inc = 1;
101 
102 
103  /* The algorithm implementation is based on the lengths of the inputs. */
104  /* srcB is always made to slide across srcA. */
105  /* So srcBLen is always considered as shorter or equal to srcALen */
106  /* But CORR(x, y) is reverse of CORR(y, x) */
107  /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
108  /* and the destination pointer modifier, inc is set to -1 */
109  /* If srcALen > srcBLen, zero pad has to be done to srcB to make the two inputs of same length */
110  /* But to improve the performance,
111  * we include zeroes in the output instead of zero padding either of the the inputs*/
112  /* If srcALen > srcBLen,
113  * (srcALen - srcBLen) zeroes has to included in the starting of the output buffer */
114  /* If srcALen < srcBLen,
115  * (srcALen - srcBLen) zeroes has to included in the ending of the output buffer */
116  if(srcALen >= srcBLen)
117  {
118  /* Initialization of inputA pointer */
119  pIn1 = (pSrcA);
120 
121  /* Initialization of inputB pointer */
122  pIn2 = (pSrcB);
123 
124  /* Number of output samples is calculated */
125  outBlockSize = (2u * srcALen) - 1u;
126 
127  /* When srcALen > srcBLen, zero padding is done to srcB
128  * to make their lengths equal.
129  * Instead, (outBlockSize - (srcALen + srcBLen - 1))
130  * number of output samples are made zero */
131  j = outBlockSize - (srcALen + (srcBLen - 1u));
132 
133  /* Updating the pointer position to non zero value */
134  pOut += j;
135 
136  }
137  else
138  {
139  /* Initialization of inputA pointer */
140  pIn1 = (pSrcB);
141 
142  /* Initialization of inputB pointer */
143  pIn2 = (pSrcA);
144 
145  /* srcBLen is always considered as shorter or equal to srcALen */
146  j = srcBLen;
147  srcBLen = srcALen;
148  srcALen = j;
149 
150  /* CORR(x, y) = Reverse order(CORR(y, x)) */
151  /* Hence set the destination pointer to point to the last output sample */
152  pOut = pDst + ((srcALen + srcBLen) - 2u);
153 
154  /* Destination address modifier is set to -1 */
155  inc = -1;
156 
157  }
158 
159  /* The function is internally
160  * divided into three parts according to the number of multiplications that has to be
161  * taken place between inputA samples and inputB samples. In the first part of the
162  * algorithm, the multiplications increase by one for every iteration.
163  * In the second part of the algorithm, srcBLen number of multiplications are done.
164  * In the third part of the algorithm, the multiplications decrease by one
165  * for every iteration.*/
166  /* The algorithm is implemented in three stages.
167  * The loop counters of each stage is initiated here. */
168  blockSize1 = srcBLen - 1u;
169  blockSize2 = srcALen - (srcBLen - 1u);
170  blockSize3 = blockSize1;
171 
172  /* --------------------------
173  * Initializations of stage1
174  * -------------------------*/
175 
176  /* sum = x[0] * y[srcBlen - 1]
177  * sum = x[0] * y[srcBlen - 2] + x[1] * y[srcBlen - 1]
178  * ....
179  * sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen - 1] * y[srcBLen - 1]
180  */
181 
182  /* In this stage the MAC operations are increased by 1 for every iteration.
183  The count variable holds the number of MAC operations performed */
184  count = 1u;
185 
186  /* Working pointer of inputA */
187  px = pIn1;
188 
189  /* Working pointer of inputB */
190  pSrc1 = pIn2 + (srcBLen - 1u);
191  py = pSrc1;
192 
193  /* ------------------------
194  * Stage1 process
195  * ----------------------*/
196 
197  /* The first stage starts here */
198  while(blockSize1 > 0u)
199  {
200  /* Accumulator is made zero for every iteration */
201  sum = 0;
202 
203  /* Apply loop unrolling and compute 4 MACs simultaneously. */
204  k = count >> 2;
205 
206  /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
207  ** a second loop below computes MACs for the remaining 1 to 3 samples. */
208  while(k > 0u)
209  {
210  /* x[0] , x[1] */
211  in1 = (q15_t) * px++;
212  in2 = (q15_t) * px++;
213  input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
214 
215  /* y[srcBLen - 4] , y[srcBLen - 3] */
216  in1 = (q15_t) * py++;
217  in2 = (q15_t) * py++;
218  input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
219 
220  /* x[0] * y[srcBLen - 4] */
221  /* x[1] * y[srcBLen - 3] */
222  sum = __SMLAD(input1, input2, sum);
223 
224  /* x[2] , x[3] */
225  in1 = (q15_t) * px++;
226  in2 = (q15_t) * px++;
227  input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
228 
229  /* y[srcBLen - 2] , y[srcBLen - 1] */
230  in1 = (q15_t) * py++;
231  in2 = (q15_t) * py++;
232  input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
233 
234  /* x[2] * y[srcBLen - 2] */
235  /* x[3] * y[srcBLen - 1] */
236  sum = __SMLAD(input1, input2, sum);
237 
238 
239  /* Decrement the loop counter */
240  k--;
241  }
242 
243  /* If the count is not a multiple of 4, compute any remaining MACs here.
244  ** No loop unrolling is used. */
245  k = count % 0x4u;
246 
247  while(k > 0u)
248  {
249  /* Perform the multiply-accumulates */
250  /* x[0] * y[srcBLen - 1] */
251  sum += (q31_t) ((q15_t) * px++ * *py++);
252 
253  /* Decrement the loop counter */
254  k--;
255  }
256 
257  /* Store the result in the accumulator in the destination buffer. */
258  *pOut = (q7_t) (__SSAT(sum >> 7, 8));
259  /* Destination pointer is updated according to the address modifier, inc */
260  pOut += inc;
261 
262  /* Update the inputA and inputB pointers for next MAC calculation */
263  py = pSrc1 - count;
264  px = pIn1;
265 
266  /* Increment the MAC count */
267  count++;
268 
269  /* Decrement the loop counter */
270  blockSize1--;
271  }
272 
273  /* --------------------------
274  * Initializations of stage2
275  * ------------------------*/
276 
277  /* sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen-1] * y[srcBLen-1]
278  * sum = x[1] * y[0] + x[2] * y[1] +...+ x[srcBLen] * y[srcBLen-1]
279  * ....
280  * sum = x[srcALen-srcBLen-2] * y[0] + x[srcALen-srcBLen-1] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
281  */
282 
283  /* Working pointer of inputA */
284  px = pIn1;
285 
286  /* Working pointer of inputB */
287  py = pIn2;
288 
289  /* count is index by which the pointer pIn1 to be incremented */
290  count = 0u;
291 
292  /* -------------------
293  * Stage2 process
294  * ------------------*/
295 
296  /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
297  * So, to loop unroll over blockSize2,
298  * srcBLen should be greater than or equal to 4 */
299  if(srcBLen >= 4u)
300  {
301  /* Loop unroll over blockSize2, by 4 */
302  blkCnt = blockSize2 >> 2u;
303 
304  while(blkCnt > 0u)
305  {
306  /* Set all accumulators to zero */
307  acc0 = 0;
308  acc1 = 0;
309  acc2 = 0;
310  acc3 = 0;
311 
312  /* read x[0], x[1], x[2] samples */
313  x0 = *px++;
314  x1 = *px++;
315  x2 = *px++;
316 
317  /* Apply loop unrolling and compute 4 MACs simultaneously. */
318  k = srcBLen >> 2u;
319 
320  /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
321  ** a second loop below computes MACs for the remaining 1 to 3 samples. */
322  do
323  {
324  /* Read y[0] sample */
325  c0 = *py++;
326  /* Read y[1] sample */
327  c1 = *py++;
328 
329  /* Read x[3] sample */
330  x3 = *px++;
331 
332  /* x[0] and x[1] are packed */
333  in1 = (q15_t) x0;
334  in2 = (q15_t) x1;
335 
336  input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
337 
338  /* y[0] and y[1] are packed */
339  in1 = (q15_t) c0;
340  in2 = (q15_t) c1;
341 
342  input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
343 
344  /* acc0 += x[0] * y[0] + x[1] * y[1] */
345  acc0 = __SMLAD(input1, input2, acc0);
346 
347  /* x[1] and x[2] are packed */
348  in1 = (q15_t) x1;
349  in2 = (q15_t) x2;
350 
351  input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
352 
353  /* acc1 += x[1] * y[0] + x[2] * y[1] */
354  acc1 = __SMLAD(input1, input2, acc1);
355 
356  /* x[2] and x[3] are packed */
357  in1 = (q15_t) x2;
358  in2 = (q15_t) x3;
359 
360  input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
361 
362  /* acc2 += x[2] * y[0] + x[3] * y[1] */
363  acc2 = __SMLAD(input1, input2, acc2);
364 
365  /* Read x[4] sample */
366  x0 = *(px++);
367 
368  /* x[3] and x[4] are packed */
369  in1 = (q15_t) x3;
370  in2 = (q15_t) x0;
371 
372  input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
373 
374  /* acc3 += x[3] * y[0] + x[4] * y[1] */
375  acc3 = __SMLAD(input1, input2, acc3);
376 
377  /* Read y[2] sample */
378  c0 = *py++;
379  /* Read y[3] sample */
380  c1 = *py++;
381 
382  /* Read x[5] sample */
383  x1 = *px++;
384 
385  /* x[2] and x[3] are packed */
386  in1 = (q15_t) x2;
387  in2 = (q15_t) x3;
388 
389  input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
390 
391  /* y[2] and y[3] are packed */
392  in1 = (q15_t) c0;
393  in2 = (q15_t) c1;
394 
395  input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
396 
397  /* acc0 += x[2] * y[2] + x[3] * y[3] */
398  acc0 = __SMLAD(input1, input2, acc0);
399 
400  /* x[3] and x[4] are packed */
401  in1 = (q15_t) x3;
402  in2 = (q15_t) x0;
403 
404  input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
405 
406  /* acc1 += x[3] * y[2] + x[4] * y[3] */
407  acc1 = __SMLAD(input1, input2, acc1);
408 
409  /* x[4] and x[5] are packed */
410  in1 = (q15_t) x0;
411  in2 = (q15_t) x1;
412 
413  input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
414 
415  /* acc2 += x[4] * y[2] + x[5] * y[3] */
416  acc2 = __SMLAD(input1, input2, acc2);
417 
418  /* Read x[6] sample */
419  x2 = *px++;
420 
421  /* x[5] and x[6] are packed */
422  in1 = (q15_t) x1;
423  in2 = (q15_t) x2;
424 
425  input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
426 
427  /* acc3 += x[5] * y[2] + x[6] * y[3] */
428  acc3 = __SMLAD(input1, input2, acc3);
429 
430  } while(--k);
431 
432  /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
433  ** No loop unrolling is used. */
434  k = srcBLen % 0x4u;
435 
436  while(k > 0u)
437  {
438  /* Read y[4] sample */
439  c0 = *py++;
440 
441  /* Read x[7] sample */
442  x3 = *px++;
443 
444  /* Perform the multiply-accumulates */
445  /* acc0 += x[4] * y[4] */
446  acc0 += ((q15_t) x0 * c0);
447  /* acc1 += x[5] * y[4] */
448  acc1 += ((q15_t) x1 * c0);
449  /* acc2 += x[6] * y[4] */
450  acc2 += ((q15_t) x2 * c0);
451  /* acc3 += x[7] * y[4] */
452  acc3 += ((q15_t) x3 * c0);
453 
454  /* Reuse the present samples for the next MAC */
455  x0 = x1;
456  x1 = x2;
457  x2 = x3;
458 
459  /* Decrement the loop counter */
460  k--;
461  }
462 
463  /* Store the result in the accumulator in the destination buffer. */
464  *pOut = (q7_t) (__SSAT(acc0 >> 7, 8));
465  /* Destination pointer is updated according to the address modifier, inc */
466  pOut += inc;
467 
468  *pOut = (q7_t) (__SSAT(acc1 >> 7, 8));
469  pOut += inc;
470 
471  *pOut = (q7_t) (__SSAT(acc2 >> 7, 8));
472  pOut += inc;
473 
474  *pOut = (q7_t) (__SSAT(acc3 >> 7, 8));
475  pOut += inc;
476 
477  count += 4u;
478  /* Update the inputA and inputB pointers for next MAC calculation */
479  px = pIn1 + count;
480  py = pIn2;
481 
482  /* Decrement the loop counter */
483  blkCnt--;
484  }
485 
486  /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
487  ** No loop unrolling is used. */
488  blkCnt = blockSize2 % 0x4u;
489 
490  while(blkCnt > 0u)
491  {
492  /* Accumulator is made zero for every iteration */
493  sum = 0;
494 
495  /* Apply loop unrolling and compute 4 MACs simultaneously. */
496  k = srcBLen >> 2u;
497 
498  /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
499  ** a second loop below computes MACs for the remaining 1 to 3 samples. */
500  while(k > 0u)
501  {
502  /* Reading two inputs of SrcA buffer and packing */
503  in1 = (q15_t) * px++;
504  in2 = (q15_t) * px++;
505  input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
506 
507  /* Reading two inputs of SrcB buffer and packing */
508  in1 = (q15_t) * py++;
509  in2 = (q15_t) * py++;
510  input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
511 
512  /* Perform the multiply-accumulates */
513  sum = __SMLAD(input1, input2, sum);
514 
515  /* Reading two inputs of SrcA buffer and packing */
516  in1 = (q15_t) * px++;
517  in2 = (q15_t) * px++;
518  input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
519 
520  /* Reading two inputs of SrcB buffer and packing */
521  in1 = (q15_t) * py++;
522  in2 = (q15_t) * py++;
523  input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
524 
525  /* Perform the multiply-accumulates */
526  sum = __SMLAD(input1, input2, sum);
527 
528  /* Decrement the loop counter */
529  k--;
530  }
531 
532  /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
533  ** No loop unrolling is used. */
534  k = srcBLen % 0x4u;
535 
536  while(k > 0u)
537  {
538  /* Perform the multiply-accumulates */
539  sum += ((q15_t) * px++ * *py++);
540 
541  /* Decrement the loop counter */
542  k--;
543  }
544 
545  /* Store the result in the accumulator in the destination buffer. */
546  *pOut = (q7_t) (__SSAT(sum >> 7, 8));
547  /* Destination pointer is updated according to the address modifier, inc */
548  pOut += inc;
549 
550  /* Increment the pointer pIn1 index, count by 1 */
551  count++;
552 
553  /* Update the inputA and inputB pointers for next MAC calculation */
554  px = pIn1 + count;
555  py = pIn2;
556 
557  /* Decrement the loop counter */
558  blkCnt--;
559  }
560  }
561  else
562  {
563  /* If the srcBLen is not a multiple of 4,
564  * the blockSize2 loop cannot be unrolled by 4 */
565  blkCnt = blockSize2;
566 
567  while(blkCnt > 0u)
568  {
569  /* Accumulator is made zero for every iteration */
570  sum = 0;
571 
572  /* Loop over srcBLen */
573  k = srcBLen;
574 
575  while(k > 0u)
576  {
577  /* Perform the multiply-accumulate */
578  sum += ((q15_t) * px++ * *py++);
579 
580  /* Decrement the loop counter */
581  k--;
582  }
583 
584  /* Store the result in the accumulator in the destination buffer. */
585  *pOut = (q7_t) (__SSAT(sum >> 7, 8));
586  /* Destination pointer is updated according to the address modifier, inc */
587  pOut += inc;
588 
589  /* Increment the MAC count */
590  count++;
591 
592  /* Update the inputA and inputB pointers for next MAC calculation */
593  px = pIn1 + count;
594  py = pIn2;
595 
596 
597  /* Decrement the loop counter */
598  blkCnt--;
599  }
600  }
601 
602  /* --------------------------
603  * Initializations of stage3
604  * -------------------------*/
605 
606  /* sum += x[srcALen-srcBLen+1] * y[0] + x[srcALen-srcBLen+2] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
607  * sum += x[srcALen-srcBLen+2] * y[0] + x[srcALen-srcBLen+3] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
608  * ....
609  * sum += x[srcALen-2] * y[0] + x[srcALen-1] * y[1]
610  * sum += x[srcALen-1] * y[0]
611  */
612 
613  /* In this stage the MAC operations are decreased by 1 for every iteration.
614  The count variable holds the number of MAC operations performed */
615  count = srcBLen - 1u;
616 
617  /* Working pointer of inputA */
618  pSrc1 = pIn1 + (srcALen - (srcBLen - 1u));
619  px = pSrc1;
620 
621  /* Working pointer of inputB */
622  py = pIn2;
623 
624  /* -------------------
625  * Stage3 process
626  * ------------------*/
627 
628  while(blockSize3 > 0u)
629  {
630  /* Accumulator is made zero for every iteration */
631  sum = 0;
632 
633  /* Apply loop unrolling and compute 4 MACs simultaneously. */
634  k = count >> 2u;
635 
636  /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
637  ** a second loop below computes MACs for the remaining 1 to 3 samples. */
638  while(k > 0u)
639  {
640  /* x[srcALen - srcBLen + 1] , x[srcALen - srcBLen + 2] */
641  in1 = (q15_t) * px++;
642  in2 = (q15_t) * px++;
643  input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
644 
645  /* y[0] , y[1] */
646  in1 = (q15_t) * py++;
647  in2 = (q15_t) * py++;
648  input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
649 
650  /* sum += x[srcALen - srcBLen + 1] * y[0] */
651  /* sum += x[srcALen - srcBLen + 2] * y[1] */
652  sum = __SMLAD(input1, input2, sum);
653 
654  /* x[srcALen - srcBLen + 3] , x[srcALen - srcBLen + 4] */
655  in1 = (q15_t) * px++;
656  in2 = (q15_t) * px++;
657  input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
658 
659  /* y[2] , y[3] */
660  in1 = (q15_t) * py++;
661  in2 = (q15_t) * py++;
662  input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
663 
664  /* sum += x[srcALen - srcBLen + 3] * y[2] */
665  /* sum += x[srcALen - srcBLen + 4] * y[3] */
666  sum = __SMLAD(input1, input2, sum);
667 
668  /* Decrement the loop counter */
669  k--;
670  }
671 
672  /* If the count is not a multiple of 4, compute any remaining MACs here.
673  ** No loop unrolling is used. */
674  k = count % 0x4u;
675 
676  while(k > 0u)
677  {
678  /* Perform the multiply-accumulates */
679  sum += ((q15_t) * px++ * *py++);
680 
681  /* Decrement the loop counter */
682  k--;
683  }
684 
685  /* Store the result in the accumulator in the destination buffer. */
686  *pOut = (q7_t) (__SSAT(sum >> 7, 8));
687  /* Destination pointer is updated according to the address modifier, inc */
688  pOut += inc;
689 
690  /* Update the inputA and inputB pointers for next MAC calculation */
691  px = ++pSrc1;
692  py = pIn2;
693 
694  /* Decrement the MAC count */
695  count--;
696 
697  /* Decrement the loop counter */
698  blockSize3--;
699  }
700 
701 #else
702 
703 /* Run the below code for Cortex-M0 */
704 
705  q7_t *pIn1 = pSrcA; /* inputA pointer */
706  q7_t *pIn2 = pSrcB + (srcBLen - 1u); /* inputB pointer */
707  q31_t sum; /* Accumulator */
708  uint32_t i = 0u, j; /* loop counters */
709  uint32_t inv = 0u; /* Reverse order flag */
710  uint32_t tot = 0u; /* Length */
711 
712  /* The algorithm implementation is based on the lengths of the inputs. */
713  /* srcB is always made to slide across srcA. */
714  /* So srcBLen is always considered as shorter or equal to srcALen */
715  /* But CORR(x, y) is reverse of CORR(y, x) */
716  /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
717  /* and a varaible, inv is set to 1 */
718  /* If lengths are not equal then zero pad has to be done to make the two
719  * inputs of same length. But to improve the performance, we include zeroes
720  * in the output instead of zero padding either of the the inputs*/
721  /* If srcALen > srcBLen, (srcALen - srcBLen) zeroes has to included in the
722  * starting of the output buffer */
723  /* If srcALen < srcBLen, (srcALen - srcBLen) zeroes has to included in the
724  * ending of the output buffer */
725  /* Once the zero padding is done the remaining of the output is calcualted
726  * using convolution but with the shorter signal time shifted. */
727 
728  /* Calculate the length of the remaining sequence */
729  tot = ((srcALen + srcBLen) - 2u);
730 
731  if(srcALen > srcBLen)
732  {
733  /* Calculating the number of zeros to be padded to the output */
734  j = srcALen - srcBLen;
735 
736  /* Initialise the pointer after zero padding */
737  pDst += j;
738  }
739 
740  else if(srcALen < srcBLen)
741  {
742  /* Initialization to inputB pointer */
743  pIn1 = pSrcB;
744 
745  /* Initialization to the end of inputA pointer */
746  pIn2 = pSrcA + (srcALen - 1u);
747 
748  /* Initialisation of the pointer after zero padding */
749  pDst = pDst + tot;
750 
751  /* Swapping the lengths */
752  j = srcALen;
753  srcALen = srcBLen;
754  srcBLen = j;
755 
756  /* Setting the reverse flag */
757  inv = 1;
758 
759  }
760 
761  /* Loop to calculate convolution for output length number of times */
762  for (i = 0u; i <= tot; i++)
763  {
764  /* Initialize sum with zero to carry on MAC operations */
765  sum = 0;
766 
767  /* Loop to perform MAC operations according to convolution equation */
768  for (j = 0u; j <= i; j++)
769  {
770  /* Check the array limitations */
771  if((((i - j) < srcBLen) && (j < srcALen)))
772  {
773  /* z[i] += x[i-j] * y[j] */
774  sum += ((q15_t) pIn1[j] * pIn2[-((int32_t) i - j)]);
775  }
776  }
777  /* Store the output in the destination buffer */
778  if(inv == 1)
779  *pDst-- = (q7_t) __SSAT((sum >> 7u), 8u);
780  else
781  *pDst++ = (q7_t) __SSAT((sum >> 7u), 8u);
782  }
783 
784 #endif /* #ifndef ARM_MATH_CM0_FAMILY */
785 
786 }
787 
int8_t q7_t
8-bit fractional data type in 1.7 format.
Definition: arm_math.h:387
int16_t q15_t
16-bit fractional data type in 1.15 format.
Definition: arm_math.h:392
void arm_correlate_q7(q7_t *pSrcA, uint32_t srcALen, q7_t *pSrcB, uint32_t srcBLen, q7_t *pDst)
Correlation of Q7 sequences.
int32_t q31_t
32-bit fractional data type in 1.31 format.
Definition: arm_math.h:397