STM32F769IDiscovery  1.00
uDANTE Audio Networking with STM32F7 DISCO board
arm_bitreversal.c
Go to the documentation of this file.
1 /* ----------------------------------------------------------------------
2 * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
3 *
4 * $Date: 19. March 2015
5 * $Revision: V.1.4.5
6 *
7 * Project: CMSIS DSP Library
8 * Title: arm_bitreversal.c
9 *
10 * Description: This file has common tables like Bitreverse, reciprocal etc which are used across different functions
11 *
12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * - Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * - Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in
21 * the documentation and/or other materials provided with the
22 * distribution.
23 * - Neither the name of ARM LIMITED nor the names of its contributors
24 * may be used to endorse or promote products derived from this
25 * software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 * -------------------------------------------------------------------- */
40 
41 #include "arm_math.h"
42 #include "arm_common_tables.h"
43 
44 /*
45 * @brief In-place bit reversal function.
46 * @param[in, out] *pSrc points to the in-place buffer of floating-point data type.
47 * @param[in] fftSize length of the FFT.
48 * @param[in] bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table.
49 * @param[in] *pBitRevTab points to the bit reversal table.
50 * @return none.
51 */
52 
54 float32_t * pSrc,
55 uint16_t fftSize,
56 uint16_t bitRevFactor,
57 uint16_t * pBitRevTab)
58 {
59  uint16_t fftLenBy2, fftLenBy2p1;
60  uint16_t i, j;
61  float32_t in;
62 
63  /* Initializations */
64  j = 0u;
65  fftLenBy2 = fftSize >> 1u;
66  fftLenBy2p1 = (fftSize >> 1u) + 1u;
67 
68  /* Bit Reversal Implementation */
69  for (i = 0u; i <= (fftLenBy2 - 2u); i += 2u)
70  {
71  if(i < j)
72  {
73  /* pSrc[i] <-> pSrc[j]; */
74  in = pSrc[2u * i];
75  pSrc[2u * i] = pSrc[2u * j];
76  pSrc[2u * j] = in;
77 
78  /* pSrc[i+1u] <-> pSrc[j+1u] */
79  in = pSrc[(2u * i) + 1u];
80  pSrc[(2u * i) + 1u] = pSrc[(2u * j) + 1u];
81  pSrc[(2u * j) + 1u] = in;
82 
83  /* pSrc[i+fftLenBy2p1] <-> pSrc[j+fftLenBy2p1] */
84  in = pSrc[2u * (i + fftLenBy2p1)];
85  pSrc[2u * (i + fftLenBy2p1)] = pSrc[2u * (j + fftLenBy2p1)];
86  pSrc[2u * (j + fftLenBy2p1)] = in;
87 
88  /* pSrc[i+fftLenBy2p1+1u] <-> pSrc[j+fftLenBy2p1+1u] */
89  in = pSrc[(2u * (i + fftLenBy2p1)) + 1u];
90  pSrc[(2u * (i + fftLenBy2p1)) + 1u] =
91  pSrc[(2u * (j + fftLenBy2p1)) + 1u];
92  pSrc[(2u * (j + fftLenBy2p1)) + 1u] = in;
93 
94  }
95 
96  /* pSrc[i+1u] <-> pSrc[j+1u] */
97  in = pSrc[2u * (i + 1u)];
98  pSrc[2u * (i + 1u)] = pSrc[2u * (j + fftLenBy2)];
99  pSrc[2u * (j + fftLenBy2)] = in;
100 
101  /* pSrc[i+2u] <-> pSrc[j+2u] */
102  in = pSrc[(2u * (i + 1u)) + 1u];
103  pSrc[(2u * (i + 1u)) + 1u] = pSrc[(2u * (j + fftLenBy2)) + 1u];
104  pSrc[(2u * (j + fftLenBy2)) + 1u] = in;
105 
106  /* Reading the index for the bit reversal */
107  j = *pBitRevTab;
108 
109  /* Updating the bit reversal index depending on the fft length */
110  pBitRevTab += bitRevFactor;
111  }
112 }
113 
114 
115 
116 /*
117 * @brief In-place bit reversal function.
118 * @param[in, out] *pSrc points to the in-place buffer of Q31 data type.
119 * @param[in] fftLen length of the FFT.
120 * @param[in] bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table
121 * @param[in] *pBitRevTab points to bit reversal table.
122 * @return none.
123 */
124 
126 q31_t * pSrc,
127 uint32_t fftLen,
128 uint16_t bitRevFactor,
129 uint16_t * pBitRevTable)
130 {
131  uint32_t fftLenBy2, fftLenBy2p1, i, j;
132  q31_t in;
133 
134  /* Initializations */
135  j = 0u;
136  fftLenBy2 = fftLen / 2u;
137  fftLenBy2p1 = (fftLen / 2u) + 1u;
138 
139  /* Bit Reversal Implementation */
140  for (i = 0u; i <= (fftLenBy2 - 2u); i += 2u)
141  {
142  if(i < j)
143  {
144  /* pSrc[i] <-> pSrc[j]; */
145  in = pSrc[2u * i];
146  pSrc[2u * i] = pSrc[2u * j];
147  pSrc[2u * j] = in;
148 
149  /* pSrc[i+1u] <-> pSrc[j+1u] */
150  in = pSrc[(2u * i) + 1u];
151  pSrc[(2u * i) + 1u] = pSrc[(2u * j) + 1u];
152  pSrc[(2u * j) + 1u] = in;
153 
154  /* pSrc[i+fftLenBy2p1] <-> pSrc[j+fftLenBy2p1] */
155  in = pSrc[2u * (i + fftLenBy2p1)];
156  pSrc[2u * (i + fftLenBy2p1)] = pSrc[2u * (j + fftLenBy2p1)];
157  pSrc[2u * (j + fftLenBy2p1)] = in;
158 
159  /* pSrc[i+fftLenBy2p1+1u] <-> pSrc[j+fftLenBy2p1+1u] */
160  in = pSrc[(2u * (i + fftLenBy2p1)) + 1u];
161  pSrc[(2u * (i + fftLenBy2p1)) + 1u] =
162  pSrc[(2u * (j + fftLenBy2p1)) + 1u];
163  pSrc[(2u * (j + fftLenBy2p1)) + 1u] = in;
164 
165  }
166 
167  /* pSrc[i+1u] <-> pSrc[j+1u] */
168  in = pSrc[2u * (i + 1u)];
169  pSrc[2u * (i + 1u)] = pSrc[2u * (j + fftLenBy2)];
170  pSrc[2u * (j + fftLenBy2)] = in;
171 
172  /* pSrc[i+2u] <-> pSrc[j+2u] */
173  in = pSrc[(2u * (i + 1u)) + 1u];
174  pSrc[(2u * (i + 1u)) + 1u] = pSrc[(2u * (j + fftLenBy2)) + 1u];
175  pSrc[(2u * (j + fftLenBy2)) + 1u] = in;
176 
177  /* Reading the index for the bit reversal */
178  j = *pBitRevTable;
179 
180  /* Updating the bit reversal index depending on the fft length */
181  pBitRevTable += bitRevFactor;
182  }
183 }
184 
185 
186 
187 /*
188  * @brief In-place bit reversal function.
189  * @param[in, out] *pSrc points to the in-place buffer of Q15 data type.
190  * @param[in] fftLen length of the FFT.
191  * @param[in] bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table
192  * @param[in] *pBitRevTab points to bit reversal table.
193  * @return none.
194 */
195 
197 q15_t * pSrc16,
198 uint32_t fftLen,
199 uint16_t bitRevFactor,
200 uint16_t * pBitRevTab)
201 {
202  q31_t *pSrc = (q31_t *) pSrc16;
203  q31_t in;
204  uint32_t fftLenBy2, fftLenBy2p1;
205  uint32_t i, j;
206 
207  /* Initializations */
208  j = 0u;
209  fftLenBy2 = fftLen / 2u;
210  fftLenBy2p1 = (fftLen / 2u) + 1u;
211 
212  /* Bit Reversal Implementation */
213  for (i = 0u; i <= (fftLenBy2 - 2u); i += 2u)
214  {
215  if(i < j)
216  {
217  /* pSrc[i] <-> pSrc[j]; */
218  /* pSrc[i+1u] <-> pSrc[j+1u] */
219  in = pSrc[i];
220  pSrc[i] = pSrc[j];
221  pSrc[j] = in;
222 
223  /* pSrc[i + fftLenBy2p1] <-> pSrc[j + fftLenBy2p1]; */
224  /* pSrc[i + fftLenBy2p1+1u] <-> pSrc[j + fftLenBy2p1+1u] */
225  in = pSrc[i + fftLenBy2p1];
226  pSrc[i + fftLenBy2p1] = pSrc[j + fftLenBy2p1];
227  pSrc[j + fftLenBy2p1] = in;
228  }
229 
230  /* pSrc[i+1u] <-> pSrc[j+fftLenBy2]; */
231  /* pSrc[i+2] <-> pSrc[j+fftLenBy2+1u] */
232  in = pSrc[i + 1u];
233  pSrc[i + 1u] = pSrc[j + fftLenBy2];
234  pSrc[j + fftLenBy2] = in;
235 
236  /* Reading the index for the bit reversal */
237  j = *pBitRevTab;
238 
239  /* Updating the bit reversal index depending on the fft length */
240  pBitRevTab += bitRevFactor;
241  }
242 }
void arm_bitreversal_q15(q15_t *pSrc16, uint32_t fftLen, uint16_t bitRevFactor, uint16_t *pBitRevTab)
float float32_t
32-bit floating-point type definition.
Definition: arm_math.h:407
int16_t q15_t
16-bit fractional data type in 1.15 format.
Definition: arm_math.h:392
int32_t q31_t
32-bit fractional data type in 1.31 format.
Definition: arm_math.h:397
void arm_bitreversal_q31(q31_t *pSrc, uint32_t fftLen, uint16_t bitRevFactor, uint16_t *pBitRevTable)
void arm_bitreversal_f32(float32_t *pSrc, uint16_t fftSize, uint16_t bitRevFactor, uint16_t *pBitRevTab)