STM32F769IDiscovery  1.00
uDANTE Audio Networking with STM32F7 DISCO board
arm_biquad_cascade_df1_q31.c
Go to the documentation of this file.
1 /* ----------------------------------------------------------------------
2 * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
3 *
4 * $Date: 19. March 2015
5 * $Revision: V.1.4.5
6 *
7 * Project: CMSIS DSP Library
8 * Title: arm_biquad_cascade_df1_q31.c
9 *
10 * Description: Processing function for the
11 * Q31 Biquad cascade filter
12 *
13 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * - Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * - Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in
22 * the documentation and/or other materials provided with the
23 * distribution.
24 * - Neither the name of ARM LIMITED nor the names of its contributors
25 * may be used to endorse or promote products derived from this
26 * software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
31 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
32 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
33 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
34 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
35 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
36 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
38 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
39 * POSSIBILITY OF SUCH DAMAGE.
40 * -------------------------------------------------------------------- */
41 
42 #include "arm_math.h"
43 
76  q31_t * pSrc,
77  q31_t * pDst,
78  uint32_t blockSize)
79 {
80  q63_t acc; /* accumulator */
81  uint32_t uShift = ((uint32_t) S->postShift + 1u);
82  uint32_t lShift = 32u - uShift; /* Shift to be applied to the output */
83  q31_t *pIn = pSrc; /* input pointer initialization */
84  q31_t *pOut = pDst; /* output pointer initialization */
85  q31_t *pState = S->pState; /* pState pointer initialization */
86  q31_t *pCoeffs = S->pCoeffs; /* coeff pointer initialization */
87  q31_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */
88  q31_t b0, b1, b2, a1, a2; /* Filter coefficients */
89  q31_t Xn; /* temporary input */
90  uint32_t sample, stage = S->numStages; /* loop counters */
91 
92 
93 #ifndef ARM_MATH_CM0_FAMILY_FAMILY
94 
95  q31_t acc_l, acc_h; /* temporary output variables */
96 
97  /* Run the below code for Cortex-M4 and Cortex-M3 */
98 
99  do
100  {
101  /* Reading the coefficients */
102  b0 = *pCoeffs++;
103  b1 = *pCoeffs++;
104  b2 = *pCoeffs++;
105  a1 = *pCoeffs++;
106  a2 = *pCoeffs++;
107 
108  /* Reading the state values */
109  Xn1 = pState[0];
110  Xn2 = pState[1];
111  Yn1 = pState[2];
112  Yn2 = pState[3];
113 
114  /* Apply loop unrolling and compute 4 output values simultaneously. */
115  /* The variable acc hold output values that are being computed:
116  *
117  * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
118  */
119 
120  sample = blockSize >> 2u;
121 
122  /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
123  ** a second loop below computes the remaining 1 to 3 samples. */
124  while(sample > 0u)
125  {
126  /* Read the input */
127  Xn = *pIn++;
128 
129  /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
130 
131  /* acc = b0 * x[n] */
132  acc = (q63_t) b0 *Xn;
133  /* acc += b1 * x[n-1] */
134  acc += (q63_t) b1 *Xn1;
135  /* acc += b[2] * x[n-2] */
136  acc += (q63_t) b2 *Xn2;
137  /* acc += a1 * y[n-1] */
138  acc += (q63_t) a1 *Yn1;
139  /* acc += a2 * y[n-2] */
140  acc += (q63_t) a2 *Yn2;
141 
142  /* The result is converted to 1.31 , Yn2 variable is reused */
143 
144  /* Calc lower part of acc */
145  acc_l = acc & 0xffffffff;
146 
147  /* Calc upper part of acc */
148  acc_h = (acc >> 32) & 0xffffffff;
149 
150  /* Apply shift for lower part of acc and upper part of acc */
151  Yn2 = (uint32_t) acc_l >> lShift | acc_h << uShift;
152 
153  /* Store the output in the destination buffer. */
154  *pOut++ = Yn2;
155 
156  /* Read the second input */
157  Xn2 = *pIn++;
158 
159  /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
160 
161  /* acc = b0 * x[n] */
162  acc = (q63_t) b0 *Xn2;
163  /* acc += b1 * x[n-1] */
164  acc += (q63_t) b1 *Xn;
165  /* acc += b[2] * x[n-2] */
166  acc += (q63_t) b2 *Xn1;
167  /* acc += a1 * y[n-1] */
168  acc += (q63_t) a1 *Yn2;
169  /* acc += a2 * y[n-2] */
170  acc += (q63_t) a2 *Yn1;
171 
172 
173  /* The result is converted to 1.31, Yn1 variable is reused */
174 
175  /* Calc lower part of acc */
176  acc_l = acc & 0xffffffff;
177 
178  /* Calc upper part of acc */
179  acc_h = (acc >> 32) & 0xffffffff;
180 
181 
182  /* Apply shift for lower part of acc and upper part of acc */
183  Yn1 = (uint32_t) acc_l >> lShift | acc_h << uShift;
184 
185  /* Store the output in the destination buffer. */
186  *pOut++ = Yn1;
187 
188  /* Read the third input */
189  Xn1 = *pIn++;
190 
191  /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
192 
193  /* acc = b0 * x[n] */
194  acc = (q63_t) b0 *Xn1;
195  /* acc += b1 * x[n-1] */
196  acc += (q63_t) b1 *Xn2;
197  /* acc += b[2] * x[n-2] */
198  acc += (q63_t) b2 *Xn;
199  /* acc += a1 * y[n-1] */
200  acc += (q63_t) a1 *Yn1;
201  /* acc += a2 * y[n-2] */
202  acc += (q63_t) a2 *Yn2;
203 
204  /* The result is converted to 1.31, Yn2 variable is reused */
205  /* Calc lower part of acc */
206  acc_l = acc & 0xffffffff;
207 
208  /* Calc upper part of acc */
209  acc_h = (acc >> 32) & 0xffffffff;
210 
211 
212  /* Apply shift for lower part of acc and upper part of acc */
213  Yn2 = (uint32_t) acc_l >> lShift | acc_h << uShift;
214 
215  /* Store the output in the destination buffer. */
216  *pOut++ = Yn2;
217 
218  /* Read the forth input */
219  Xn = *pIn++;
220 
221  /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
222 
223  /* acc = b0 * x[n] */
224  acc = (q63_t) b0 *Xn;
225  /* acc += b1 * x[n-1] */
226  acc += (q63_t) b1 *Xn1;
227  /* acc += b[2] * x[n-2] */
228  acc += (q63_t) b2 *Xn2;
229  /* acc += a1 * y[n-1] */
230  acc += (q63_t) a1 *Yn2;
231  /* acc += a2 * y[n-2] */
232  acc += (q63_t) a2 *Yn1;
233 
234  /* The result is converted to 1.31, Yn1 variable is reused */
235  /* Calc lower part of acc */
236  acc_l = acc & 0xffffffff;
237 
238  /* Calc upper part of acc */
239  acc_h = (acc >> 32) & 0xffffffff;
240 
241  /* Apply shift for lower part of acc and upper part of acc */
242  Yn1 = (uint32_t) acc_l >> lShift | acc_h << uShift;
243 
244  /* Every time after the output is computed state should be updated. */
245  /* The states should be updated as: */
246  /* Xn2 = Xn1 */
247  /* Xn1 = Xn */
248  /* Yn2 = Yn1 */
249  /* Yn1 = acc */
250  Xn2 = Xn1;
251  Xn1 = Xn;
252 
253  /* Store the output in the destination buffer. */
254  *pOut++ = Yn1;
255 
256  /* decrement the loop counter */
257  sample--;
258  }
259 
260  /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
261  ** No loop unrolling is used. */
262  sample = (blockSize & 0x3u);
263 
264  while(sample > 0u)
265  {
266  /* Read the input */
267  Xn = *pIn++;
268 
269  /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
270 
271  /* acc = b0 * x[n] */
272  acc = (q63_t) b0 *Xn;
273  /* acc += b1 * x[n-1] */
274  acc += (q63_t) b1 *Xn1;
275  /* acc += b[2] * x[n-2] */
276  acc += (q63_t) b2 *Xn2;
277  /* acc += a1 * y[n-1] */
278  acc += (q63_t) a1 *Yn1;
279  /* acc += a2 * y[n-2] */
280  acc += (q63_t) a2 *Yn2;
281 
282  /* The result is converted to 1.31 */
283  acc = acc >> lShift;
284 
285  /* Every time after the output is computed state should be updated. */
286  /* The states should be updated as: */
287  /* Xn2 = Xn1 */
288  /* Xn1 = Xn */
289  /* Yn2 = Yn1 */
290  /* Yn1 = acc */
291  Xn2 = Xn1;
292  Xn1 = Xn;
293  Yn2 = Yn1;
294  Yn1 = (q31_t) acc;
295 
296  /* Store the output in the destination buffer. */
297  *pOut++ = (q31_t) acc;
298 
299  /* decrement the loop counter */
300  sample--;
301  }
302 
303  /* The first stage goes from the input buffer to the output buffer. */
304  /* Subsequent stages occur in-place in the output buffer */
305  pIn = pDst;
306 
307  /* Reset to destination pointer */
308  pOut = pDst;
309 
310  /* Store the updated state variables back into the pState array */
311  *pState++ = Xn1;
312  *pState++ = Xn2;
313  *pState++ = Yn1;
314  *pState++ = Yn2;
315 
316  } while(--stage);
317 
318 #else
319 
320  /* Run the below code for Cortex-M0 */
321 
322  do
323  {
324  /* Reading the coefficients */
325  b0 = *pCoeffs++;
326  b1 = *pCoeffs++;
327  b2 = *pCoeffs++;
328  a1 = *pCoeffs++;
329  a2 = *pCoeffs++;
330 
331  /* Reading the state values */
332  Xn1 = pState[0];
333  Xn2 = pState[1];
334  Yn1 = pState[2];
335  Yn2 = pState[3];
336 
337  /* The variables acc holds the output value that is computed:
338  * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
339  */
340 
341  sample = blockSize;
342 
343  while(sample > 0u)
344  {
345  /* Read the input */
346  Xn = *pIn++;
347 
348  /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
349  /* acc = b0 * x[n] */
350  acc = (q63_t) b0 *Xn;
351 
352  /* acc += b1 * x[n-1] */
353  acc += (q63_t) b1 *Xn1;
354  /* acc += b[2] * x[n-2] */
355  acc += (q63_t) b2 *Xn2;
356  /* acc += a1 * y[n-1] */
357  acc += (q63_t) a1 *Yn1;
358  /* acc += a2 * y[n-2] */
359  acc += (q63_t) a2 *Yn2;
360 
361  /* The result is converted to 1.31 */
362  acc = acc >> lShift;
363 
364  /* Every time after the output is computed state should be updated. */
365  /* The states should be updated as: */
366  /* Xn2 = Xn1 */
367  /* Xn1 = Xn */
368  /* Yn2 = Yn1 */
369  /* Yn1 = acc */
370  Xn2 = Xn1;
371  Xn1 = Xn;
372  Yn2 = Yn1;
373  Yn1 = (q31_t) acc;
374 
375  /* Store the output in the destination buffer. */
376  *pOut++ = (q31_t) acc;
377 
378  /* decrement the loop counter */
379  sample--;
380  }
381 
382  /* The first stage goes from the input buffer to the output buffer. */
383  /* Subsequent stages occur in-place in the output buffer */
384  pIn = pDst;
385 
386  /* Reset to destination pointer */
387  pOut = pDst;
388 
389  /* Store the updated state variables back into the pState array */
390  *pState++ = Xn1;
391  *pState++ = Xn2;
392  *pState++ = Yn1;
393  *pState++ = Yn2;
394 
395  } while(--stage);
396 
397 #endif /* #ifndef ARM_MATH_CM0_FAMILY_FAMILY */
398 }
399 
400 
401 
402 
int64_t q63_t
64-bit fractional data type in 1.63 format.
Definition: arm_math.h:402
void arm_biquad_cascade_df1_q31(const arm_biquad_casd_df1_inst_q31 *S, q31_t *pSrc, q31_t *pDst, uint32_t blockSize)
Processing function for the Q31 Biquad cascade filter.
Instance structure for the Q31 Biquad cascade filter.
Definition: arm_math.h:1231
int32_t q31_t
32-bit fractional data type in 1.31 format.
Definition: arm_math.h:397