STM32F769IDiscovery  1.00
uDANTE Audio Networking with STM32F7 DISCO board
arm_biquad_cascade_df1_fast_q31.c
Go to the documentation of this file.
1 /* ----------------------------------------------------------------------
2 * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
3 *
4 * $Date: 19. October 2015
5 * $Revision: V.1.4.5 a
6 *
7 * Project: CMSIS DSP Library
8 * Title: arm_biquad_cascade_df1_fast_q31.c
9 *
10 * Description: Processing function for the
11 * Q31 Fast Biquad cascade DirectFormI(DF1) filter.
12 *
13 * Target Processor: Cortex-M4/Cortex-M3
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * - Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * - Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in
22 * the documentation and/or other materials provided with the
23 * distribution.
24 * - Neither the name of ARM LIMITED nor the names of its contributors
25 * may be used to endorse or promote products derived from this
26 * software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
31 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
32 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
33 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
34 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
35 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
36 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
38 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
39 * POSSIBILITY OF SUCH DAMAGE.
40 * -------------------------------------------------------------------- */
41 
42 #include "arm_math.h"
43 
79  q31_t * pSrc,
80  q31_t * pDst,
81  uint32_t blockSize)
82 {
83  q31_t acc = 0; /* accumulator */
84  q31_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */
85  q31_t b0, b1, b2, a1, a2; /* Filter coefficients */
86  q31_t *pIn = pSrc; /* input pointer initialization */
87  q31_t *pOut = pDst; /* output pointer initialization */
88  q31_t *pState = S->pState; /* pState pointer initialization */
89  q31_t *pCoeffs = S->pCoeffs; /* coeff pointer initialization */
90  q31_t Xn; /* temporary input */
91  int32_t shift = (int32_t) S->postShift + 1; /* Shift to be applied to the output */
92  uint32_t sample, stage = S->numStages; /* loop counters */
93 
94 
95  do
96  {
97  /* Reading the coefficients */
98  b0 = *pCoeffs++;
99  b1 = *pCoeffs++;
100  b2 = *pCoeffs++;
101  a1 = *pCoeffs++;
102  a2 = *pCoeffs++;
103 
104  /* Reading the state values */
105  Xn1 = pState[0];
106  Xn2 = pState[1];
107  Yn1 = pState[2];
108  Yn2 = pState[3];
109 
110  /* Apply loop unrolling and compute 4 output values simultaneously. */
111  /* The variables acc ... acc3 hold output values that are being computed:
112  *
113  * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
114  */
115 
116  sample = blockSize >> 2u;
117 
118  /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
119  ** a second loop below computes the remaining 1 to 3 samples. */
120  while(sample > 0u)
121  {
122  /* Read the input */
123  Xn = *pIn;
124 
125  /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
126  /* acc = b0 * x[n] */
127  /*acc = (q31_t) (((q63_t) b1 * Xn1) >> 32);*/
128  mult_32x32_keep32_R(acc, b1, Xn1);
129  /* acc += b1 * x[n-1] */
130  /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b0 * (Xn))) >> 32);*/
131  multAcc_32x32_keep32_R(acc, b0, Xn);
132  /* acc += b[2] * x[n-2] */
133  /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);*/
134  multAcc_32x32_keep32_R(acc, b2, Xn2);
135  /* acc += a1 * y[n-1] */
136  /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);*/
137  multAcc_32x32_keep32_R(acc, a1, Yn1);
138  /* acc += a2 * y[n-2] */
139  /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);*/
140  multAcc_32x32_keep32_R(acc, a2, Yn2);
141 
142  /* The result is converted to 1.31 , Yn2 variable is reused */
143  Yn2 = acc << shift;
144 
145  /* Read the second input */
146  Xn2 = *(pIn + 1u);
147 
148  /* Store the output in the destination buffer. */
149  *pOut = Yn2;
150 
151  /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
152  /* acc = b0 * x[n] */
153  /*acc = (q31_t) (((q63_t) b0 * (Xn2)) >> 32);*/
154  mult_32x32_keep32_R(acc, b0, Xn2);
155  /* acc += b1 * x[n-1] */
156  /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn))) >> 32);*/
157  multAcc_32x32_keep32_R(acc, b1, Xn);
158  /* acc += b[2] * x[n-2] */
159  /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn1))) >> 32);*/
160  multAcc_32x32_keep32_R(acc, b2, Xn1);
161  /* acc += a1 * y[n-1] */
162  /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn2))) >> 32);*/
163  multAcc_32x32_keep32_R(acc, a1, Yn2);
164  /* acc += a2 * y[n-2] */
165  /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn1))) >> 32);*/
166  multAcc_32x32_keep32_R(acc, a2, Yn1);
167 
168  /* The result is converted to 1.31, Yn1 variable is reused */
169  Yn1 = acc << shift;
170 
171  /* Read the third input */
172  Xn1 = *(pIn + 2u);
173 
174  /* Store the output in the destination buffer. */
175  *(pOut + 1u) = Yn1;
176 
177  /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
178  /* acc = b0 * x[n] */
179  /*acc = (q31_t) (((q63_t) b0 * (Xn1)) >> 32);*/
180  mult_32x32_keep32_R(acc, b0, Xn1);
181  /* acc += b1 * x[n-1] */
182  /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn2))) >> 32);*/
183  multAcc_32x32_keep32_R(acc, b1, Xn2);
184  /* acc += b[2] * x[n-2] */
185  /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn))) >> 32);*/
186  multAcc_32x32_keep32_R(acc, b2, Xn);
187  /* acc += a1 * y[n-1] */
188  /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);*/
189  multAcc_32x32_keep32_R(acc, a1, Yn1);
190  /* acc += a2 * y[n-2] */
191  /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);*/
192  multAcc_32x32_keep32_R(acc, a2, Yn2);
193 
194  /* The result is converted to 1.31, Yn2 variable is reused */
195  Yn2 = acc << shift;
196 
197  /* Read the forth input */
198  Xn = *(pIn + 3u);
199 
200  /* Store the output in the destination buffer. */
201  *(pOut + 2u) = Yn2;
202  pIn += 4u;
203 
204  /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
205  /* acc = b0 * x[n] */
206  /*acc = (q31_t) (((q63_t) b0 * (Xn)) >> 32);*/
207  mult_32x32_keep32_R(acc, b0, Xn);
208  /* acc += b1 * x[n-1] */
209  /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn1))) >> 32);*/
210  multAcc_32x32_keep32_R(acc, b1, Xn1);
211  /* acc += b[2] * x[n-2] */
212  /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);*/
213  multAcc_32x32_keep32_R(acc, b2, Xn2);
214  /* acc += a1 * y[n-1] */
215  /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn2))) >> 32);*/
216  multAcc_32x32_keep32_R(acc, a1, Yn2);
217  /* acc += a2 * y[n-2] */
218  /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn1))) >> 32);*/
219  multAcc_32x32_keep32_R(acc, a2, Yn1);
220 
221  /* Every time after the output is computed state should be updated. */
222  /* The states should be updated as: */
223  /* Xn2 = Xn1 */
224  Xn2 = Xn1;
225 
226  /* The result is converted to 1.31, Yn1 variable is reused */
227  Yn1 = acc << shift;
228 
229  /* Xn1 = Xn */
230  Xn1 = Xn;
231 
232  /* Store the output in the destination buffer. */
233  *(pOut + 3u) = Yn1;
234  pOut += 4u;
235 
236  /* decrement the loop counter */
237  sample--;
238  }
239 
240  /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
241  ** No loop unrolling is used. */
242  sample = (blockSize & 0x3u);
243 
244  while(sample > 0u)
245  {
246  /* Read the input */
247  Xn = *pIn++;
248 
249  /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
250  /* acc = b0 * x[n] */
251  /*acc = (q31_t) (((q63_t) b0 * (Xn)) >> 32);*/
252  mult_32x32_keep32_R(acc, b0, Xn);
253  /* acc += b1 * x[n-1] */
254  /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn1))) >> 32);*/
255  multAcc_32x32_keep32_R(acc, b1, Xn1);
256  /* acc += b[2] * x[n-2] */
257  /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);*/
258  multAcc_32x32_keep32_R(acc, b2, Xn2);
259  /* acc += a1 * y[n-1] */
260  /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);*/
261  multAcc_32x32_keep32_R(acc, a1, Yn1);
262  /* acc += a2 * y[n-2] */
263  /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);*/
264  multAcc_32x32_keep32_R(acc, a2, Yn2);
265 
266  /* The result is converted to 1.31 */
267  acc = acc << shift;
268 
269  /* Every time after the output is computed state should be updated. */
270  /* The states should be updated as: */
271  /* Xn2 = Xn1 */
272  /* Xn1 = Xn */
273  /* Yn2 = Yn1 */
274  /* Yn1 = acc */
275  Xn2 = Xn1;
276  Xn1 = Xn;
277  Yn2 = Yn1;
278  Yn1 = acc;
279 
280  /* Store the output in the destination buffer. */
281  *pOut++ = acc;
282 
283  /* decrement the loop counter */
284  sample--;
285  }
286 
287  /* The first stage goes from the input buffer to the output buffer. */
288  /* Subsequent stages occur in-place in the output buffer */
289  pIn = pDst;
290 
291  /* Reset to destination pointer */
292  pOut = pDst;
293 
294  /* Store the updated state variables back into the pState array */
295  *pState++ = Xn1;
296  *pState++ = Xn2;
297  *pState++ = Yn1;
298  *pState++ = Yn2;
299 
300  } while(--stage);
301 }
302 
void arm_biquad_cascade_df1_fast_q31(const arm_biquad_casd_df1_inst_q31 *S, q31_t *pSrc, q31_t *pDst, uint32_t blockSize)
Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-...
#define multAcc_32x32_keep32_R(a, x, y)
Definition: arm_math.h:7042
Instance structure for the Q31 Biquad cascade filter.
Definition: arm_math.h:1231
int32_t q31_t
32-bit fractional data type in 1.31 format.
Definition: arm_math.h:397
#define mult_32x32_keep32_R(a, x, y)
Definition: arm_math.h:7050