


Some language features:
Recap types
Recap pointers

“Veeneers” and alignment

struct and message passing
volatile

Loops

Code Image (startup)
Registers

Test Bench Ports




is a Higher Level Assembly Code language
C supports to be platform and processor independent

C allows all fundamental operations which can be done with
machine code (assembly instructions or small sequences of it)

does NOT support high level, very abstract operations, e.g.
string operations, complex math operations, network access,
graphics (widgets)

Such support is based on Libraries (pre-compiled functions)

Compilers support special instructions via “Intrinsics’,
e.g.

_ wfi ()

__sev()




et f‘ = ==
o —

@

- - s -

supports non-complex data types:
(singed/unsigned) char, short, int
long, long long
float, double
enum

* Pointers //to any type, incl. functions

supports structures and unions:

struct //structured (a record) of members
union //sharing same memory location

allows to define new types (like aliases):
typedef




fia
i
Y St 2l W
i L Y
|

k. . *,_

g
|

-

int, long, long long and pointers are platform
dependent:

int : 32bit on V7 and V8 (Atmel: 16bit)
long : on V7 | on V8
* pointers : on V7 | on V8

is our friend for generic coding:

sizeof (int)
sizeof (long)
sizeof (char *) //figure out platform




Use typedef for platform dependent types:

typedef unsigned int UInt32;
typedef unsigned long long UInté64;

Benefit:

We can modify the real type just at one place (all code lines
using it will follow automatically).

A platform header file can act as single place to adapt.

//better:

guaranteed number of bytes written




(Generic use

Use enum instead of macros:
typedef enum {
CMD O,
CMD 1
} E_Commands;

Benefit:
We are forced to use the right type, e.g. on function calls.

We avoid mistakes when using macros or hard-coded values.

compiler will check




Pointers are powerful but risky (“side effects”)

//call by reference:

//call by value:

fast! (just registers used)

parameter is result a
from function call




Be aware of alignment!

(int *)
sizeof (myByteArray) / sizeof (int)




Don’t mix immediates (values) with pointers

OK on all platforms

UInt32 addr




How to cast pointers properly?

Use to make it platform independent
(also automatic endian)

ptrAddr
Addr32bit




A veener is an (automatically) generated auxiliary
code for “long jumps”.

V8 (64bit) needs properly aligned veeners.

If the instruction code word cannot take the distance for a
“long jump” the veener is needed.

V7 (32bit) assumes 4byte aligned, V8 (64bit) 8 byte alignment.




Structures - | -~

Be carful when structures (messages) are
crossing boundaries and platforms

msgHdr V8 (64bit)
*contentPtr

same definition and code used

V7 (32bit)




Structures - i o

Members are aligned (platform dependent)!

Pointers are platform dependent!

e R

mngdr mngdr

Alignment Hole

Alignment Hole (3 bytes)

(7 bytes)
ContentPtr
(4 bytes)
ContentPtr
(8 bytes)




Be aware of using
is used to tell compiler:
A) do not optimize the use of variable
B) assume two consecutive reads will give different results

Compilers use a real memory as model with assumption: what was written

there will be kept: reading it back results always in the same if not another
write done.

optimized into: should not be optimized

and loop should be done




Be aware of while{} and do-{}-while

works OK

Local (type “auto”) variables !
Random values and possible to geti as o as well.

while—{} Zero-times
at least one do-{}-while




Code Image - |

Our code startsatmain () - what is expected?

SRAM is initialized with global variables (.data)
Static variables are initialized (.bss)
Zero-Initialized data (ZI) in RAM is set to zero

Silicon Boot main () expects

BROM BROM

SRAM 71




Code Image -1l

Startup code will initialize system

scatterload
copy from ROM, iterate to write zero to SRAM

e Load View Execution View

2 Vector Table data
Startup Code J bss

Copy .data (loop)

Copy .bss (loop) Zl

Write ZI (loop) malloc ()
Set SP registers

Configure HW stack

Jump to main

main () Code on SRAM

Copies for SRAM




Code Image - I —

Backdoor Load on DV shortens startup

Initialize ALL memories for Execution View

entry Load View Execution View

Vector Table/ data

.bss

Startup Code

Set SP registers mal l ocC (

Jump to main

S tack (run time overhead)
top_of_stack

main ( Code on SRAM

BROM SRAM




DV or Linux like style?

DV uses RDBs : based on macros and #define
Linux (and embedded systems) prefer struct and “device pointers”

1) Linux like device

APBl base
APB2_ base

APBl base

APB2 base




LB Ports

External TB ports are platform agnostic!

_/

Example: print f implemented on TB

V7 (32bit)

fmt (address)
par1 (address or value)
par2 (address or value)
par3 (address or value)

All as 32bit

V8 (64bit)

fmt (address)

par1 (address or value)
par2 (address or value)

par3 (address or value)

All as 64bit




