
Intro to C language

Generic coding in C for SoC DV

ARM V8/64bit aspects
Torsten Jaekel, June 2014

• Some C language features:
• Recap types

• Recap pointers

• “Veeneers” and alignment

• struct and message passing

• volatile

• Loops

• Code Image (startup)

• Registers

• Test Bench Ports

• C is a Higher Level Assembly Code language

• C supports to be platform and processor independent

• C allows all fundamental operations which can be done with
machine code (assembly instructions or small sequences of it)

• C does NOT support high level, very abstract operations, e.g.
string operations, complex math operations, network access,
graphics (widgets)

• Such support is based on Libraries (pre-compiled functions)

• Compilers support special instructions via “Intrinsics”,
e.g.

__wfi()

__sev()

C supports non-complex data types:
(singed/unsigned) char, short, int

long, long long

float, double

enum

* Pointers //to any type, incl. functions

• C supports structures and unions:
struct //structured (a record) of members

union //sharing same memory location

• C allows to define new types (like aliases):
typedef

• enum and typedef should be used more often.

• They support type-safe definition and usage, way better as macros.

int, long, long long and pointers are platform
dependent:

int : 32bit on V7 and V8 (Atmel: 16bit)

long : 32bit on V7 | 64bit on V8

* pointers : 32bit on V7 | 64bit on V8

• sizeof() is our friend for generic coding:
sizeof(int) = 4

sizeof(long) = 4 or 8

sizeof(char *) = 4 or 8 //figure out platform

int myIntArray[20]; //just change size here

char myCharArray[sizeof(int) * 20]; //same size

for (i = 0; i < (sizeof(myIntArray) / sizeof(int)); i++) {

myIntArray[i] = myCharArray[i];

}

Use typedef for platform dependent types:

typedef unsigned int UInt32;

typedef unsigned long long UInt64;

• Benefit:

• We can modify the real type just at one place (all code lines
using it will follow automatically).

• A platform header file can act as single place to adapt.

long *myPtr;

long myVar;

myPtr = &myVar;

*myPtr = 0x12; //4 bytes or 8 bytes written !

myPtr++; //incremented by 4 or 8?

//better:

UInt32 *myPtr;

*myPtr++ = 0x12; //guaranteed number of bytes written

Use enum instead of macros:
typedef enum {

CMD_0,
CMD_1

} E_Commands;

• Benefit:

• We are forced to use the right type, e.g. on function calls.

• We avoid mistakes when using macros or hard-coded values.

int myEnumFunction(int i, E_Commands cmd)
{

switch (cmd) {
case CMD_0 : return i + 1;
case CMD_1 : return i * 2;

case 2 : return i << 1; //WARNING!
}

return 0;

}

myEnumFunction(10, CMD_1); //compiler will check
myEnumFunction(10, (E_Commands)1); //OK but not nice

Pointers are powerful but risky (“side effects”)

//call by reference:

void myPtrFunction1(int i, /*const*/ int *j, int *result)
{

*result = i + *j; //slow! side effect! 2 mem accesses!

}

//call by value:

int myPtrFunction2(int j, int j)
{

return i + j; //fast! (just registers used)

}

int j;

int result;

j = 20; //additional instruction needed

myPtrFunction1(10, &j, &result); //what if result is a

//shared variable? (multi-core !)

result = myPtrFunction2(10, 20);
printf(“%d”, myPtrFunction2(10, j); //parameter is result a

//from function call

Be aware of alignment!

char myByteArray[20];

void myWordFillFunction(int *ptr, int val, int size)

{

while (size--) {

*ptr++ = val;

}

}

//are we sure myByteArray is word aligned? No guarantee!

myWordFillFunction((int *)myByteArray, 0x11, 20);

//obviously wrong – alignment violation!

myWordFillFunction((int *)&myByteArray[1], 0x11,
sizeof(myByteArray) / sizeof(int));

Don’t mix immediates (values) with pointers

UInt32 val;

char *myPtr;

char *byteVar;

myPtr = &byteVar; //OK on all platforms

if ((UInt32)myPtr > 0x80000000) { //what on V8, 64bit?

void myFunction(UInt32 addr, UInt32 val)

{

UInt32 *ptr = (UInt32 *)addr; //maybe OK

*ptr = val;

}

myFunction((Uint32)&byteVar, 0x11); //Warning on V8,
//pointer (address) truncation!

How to cast pointers properly?
Use union to make it platform independent
(also automatic endian)

typedef union {

UInt32 Addr32bit; //immediate value

void *ptrAddr; //address (any pointer)

} U_ADDR_CAST;

char anyVar;

U_ADDR_CAST addrCast; //helper union variable

addrCast.ptrAddr = &anyVar; //put pointer in

if (addrCast.Addr32bit & 0x3) { //take value out

//it was not 32bit word aligned

A veener is an (automatically) generated auxiliary
code for “long jumps”.
V8 (64bit) needs properly aligned veeners.

0x0000275c: 940014f5 BL VenXX$L$$printf ; 0x7b30

VenXX$L$$printf

0x00007b30: 58000050 P..X LDR x16,{pc}+8 ; 0x7b38 ; [0x7b38] =

0x00007b34: d61f0200 BR x16

$d

0x00007b38: 34049810 ...4 DCD 872716304

0x00007b3c: 00000000 DCD 0

If the instruction code word cannot take the distance for a
“long jump” the veener is needed.
V7 (32bit) assumes 4byte aligned, V8 (64bit) 8 byte alignment.

It might be necessary to force proper alignment for
Veeners. Align the “literal pool” via scatter file.

Be carful when structures (messages) are
crossing boundaries and platforms

typedef struct {

char msgHdr;

UInt32 *contentPtr;

} T_EXT_MSG;

UInt32 msgContent[20];

T_EXT_MSG msg;

msg.msgHdr = 0x11;

msg.contentPtr = msgContent;

IPC_Send_Msg(msg);

V8 (64bit)

V7 (32bit)

same definition and code used

It compiles fine on both – but the message
(as byte array) is NOT the same! – Alignments!

Members are aligned (platform dependent)!

Pointers are platform dependent!

V8 (64bit) V7 (32bit)

msgHdrr

Alignment Hole
(7 bytes)

ContentPtr
(8 bytes)

msgHdrr

Alignment Hole
(3 bytes)

ContentPtr
(4 bytes)

Don’t use pointers in messages crossing boundaries!
Use well-controlled elementaty types only!

Be aware of using volatile
• volatile is used to tell compiler:
• A) do not optimize the use of variable
• B) assume two consecutive reads will give different results
• Compilers use a real memory as model with assumption: what was written

there will be kept: reading it back results always in the same if not another
write done.

int i = 10; volatile int i = 10;

while (i < 10) { while (i < 10) {

//do something //wait for other core

} }

//optimized into: //should not be optimized

int i = 10; //and loop should be done

//do nothing

volatile is needed on HW registers and shared
variables for multi-core scenarios.

Be aware of while{} and do-{}-while

volatile int i;

while (i) { do {

i = READ_REG(APB); i = READ_REG(APB);

} } while (i);

//randomly failing! //works OK

Local (type “auto”) variables are not initialized!
Random values and possible to get i as 0 as well.

Use while-{} if zero-times done (skip) is a valid case.

If at least one iteration is needed – use do-{}-while.
(it saves also an initialization instruction)

Our code starts at main() – what is expected?
• SRAM is initialized with global variables (.data)
• Static variables are initialized (.bss)
• Zero-Initialized data (ZI) in RAM is set to zero

BROM

SRAM
(random content)

BROM

.data

.bss

ZI

heap

stack

Silicon Boot main() expects

Startup code (before main) has to initialize memories

SRAM

initialized

Startup code will initialize system

• scatterload

• copy from ROM, iterate to write zero to SRAM

.data

.bss

ZI

heap

stack

Load View

Scatter File (ARM) or Linker Command File (GNU) has a “load” and
an “execution view”, linker creates auxiliary code and “meta data”.

Vector Table

Startup Code
• Copy .data (loop)
• Copy .bss (loop)
• Write ZI (loop)
• Set SP registers
• Configure HW
• Jump to main

main() Code on SRAM

Copies for SRAM

entry Execution View

malloc()

Backdoor Load on DV shortens startup
• Initialize ALL memories for Execution View

.data

.bss

ZI

stack

Load View

Define Scatter File (ARM), Linker Command File (GNU) for “Execution
View”, parse AXF/ELF file and generate backdoor load images (fromelf)

Vector Table

Startup Code
• Set SP registers
• Configure HW
• Jump to main

main() Code on SRAM

entry Execution View

top_of_stack

Backdoor Load

BROM SRAM

malloc()

prohibited
(run time overhead)

DV or Linux like style?
• DV uses RDBs : based on macros and #define
• Linux (and embedded systems) prefer struct and “device pointers”

DV

If we have several instances of same block – how to write code
flexible to deal with it (code reuse)?

Linux like device

#define APB1_base 0x34000000

#define APB2_base 0x34010000

#define reg0_offset 0

#define reg1_offset 4

#define WRITE_REG(block, reg, val)
*((volatile UInt32 *)(block + reg)) = val)

WRITE_REG(APB1_base, reg0_offset, 0x11);

WRITE_REG(APB2_base, reg0_offset, 0x22);

typedef struct {

volatile UInt32 reg0;

volatile UInt32 reg1;

} T_APB_BLOCK;

#define APB1_base 0x34000000

#define APB2_base 0x34010000

T_APB_BLOCK *devicePtr;

devicePtr = (T_APB_BLOCK *)APB1_base;

devicePtr->reg0 = 0x11;

devicePtr = (T_APB_BLOCK *)APB2_base;

devicePtr->reg0 = 0x22;

External TB ports are platform agnostic!
• Example: printf implemented on TB

V7 (32bit)

TB has to know how to interpret parameters (32bit vs, 64bit)

V8 (64bit)

printf(“%s : %d”, “sub-string”, 10);

__asm printf(char *fmt, …) {

//R0 : par0 : 32bit address to fmt

//R1 : par1 : 32bit (an address here)

//R2 : par2 : 32bit (value, here 10)

//R3 : par3 : 32bit (value or address)

__asm printf(char *fmt, …) {

//W0 : par0 : 64bit address to fmt

//W1 : par1 : 64bit (an address here)

//W2 : par2 : 64bit (value, here 10)

//W3 : par3 : 64bit (value or address)

fmt (address)

par1 (address or value)

par2 (address or value)
par3 (address or value)

fmt (address)

par1 (address or value)

par2 (address or value)

par3 (address or value)

All as 32bit All as 64bit

